Undrained cavity expansion in anisotropic soils with isotropic and frictional destructuration

2021 ◽  
Author(s):  
Pin-Qiang Mo ◽  
Haohua Chen ◽  
Hai-Sui Yu
Keyword(s):  
2021 ◽  
pp. 204141962110272
Author(s):  
Chaomei Meng ◽  
Dianyi Song ◽  
Qinghua Tan ◽  
Zhigang Jiang ◽  
Liangcai Cai ◽  
...  

Cellular steel-tube-confined concrete (CSTCC) targets show improved anti-penetration performance over single-cell STCC targets due to the confinement effect of surrounding cells on the impacted cell. Dynamic finite cylindrical cavity-expansion (FCCE) models including radial confinement effect were developed to predict the depth of penetration (DOP) for CSTCC targets normally penetrated by rigid sharp-nosed projectiles, and stiffness of radial confinement was achieved with the elastic solution of infinite cylindrical shell in Winkler medium. Steady responses of dynamic FCCE models were obtained on the assumption of incompressibility of concrete, failure of comminuted zone with Heok–Brown criterion and two possible response modes of the confined concrete in the impacted cell. Furthermore, a DOP model for CSTCC targets normally impacted by rigid projectiles was also proposed on the basis of the dynamic FCCE approximate model. Lastly, relevant penetration tests of CSTCC targets normally penetrated by 12.7 mm armor piecing projectile (APP) were taken as examples to validate the dynamic FCCE models and the corresponding DOP model. The results show that the DOP results based on dynamic FCCE model agree well with those of the CSTCC targets normally penetrated by rigid conical or other sharp-nosed projectiles.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jingpei Li ◽  
Yaguo Zhang ◽  
Haibing Chen ◽  
Fayun Liang

Based on the hypothesis that the penetration of a single pile can be simulated by a series of spherical cavity expansions, this paper presents an analytical solution of cavity expansion near the sloping ground. Compared with the cavity expansion in the half-space, the sloping free boundary has been taken into account as well as the horizontal free boundary. The sloping and horizontal free surfaces are considered by the introduction of a virtual image technique, the harmonic function, and the Boussinesq solution. The results show that the sloping free boundary and the variation of the inclination angle have pronounced influences on the distribution of the stress and displacement induced by the spherical cavity expansion. The present solution provides a simplified and realistic theoretical method to predict the soil behaviors around the spherical cavity near the sloping ground. The approach can also be used for the determination of the inclination angle of the slope according to the maximum permissible displacement.


2018 ◽  
Vol 102 ◽  
pp. 216-228 ◽  
Author(s):  
Yan Cheng ◽  
Hong-Wei Yang ◽  
De'an Sun

Sign in / Sign up

Export Citation Format

Share Document