Classification of simple weight modules for super-Virasoro algebra with a finite-dimensional weight space

2015 ◽  
Vol 10 (5) ◽  
pp. 1233-1242 ◽  
Author(s):  
Xiufu Zhang
2012 ◽  
Vol 55 (3) ◽  
pp. 697-709 ◽  
Author(s):  
Xiangqian Guo ◽  
Rencai Lu ◽  
Kaiming Zhao

AbstractLet G be an arbitrary non-zero additive subgroup of the complex number field ℂ, and let Vir[G] be the corresponding generalized Virasoro algebra over ℂ. In this paper we determine all irreducible weight modules with finite-dimensional weight spaces over Vir[G]. The classification strongly depends on the index group G. If G does not have a direct summand isomorphic to ℤ (the integers), then such irreducible modules over Vir[G] are only modules of intermediate series whose weight spaces are all one dimensional. Otherwise, there is one further class of modules that are constructed by using intermediate series modules over a generalized Virasoro subalgebra Vir[G0] of Vir[G] for a direct summand G0 of G with G = G0 ⊕ ℤb, where b ∈ G \ G0. This class of irreducible weight modules do not have corresponding weight modules for the classical Virasoro algebra.


2010 ◽  
Vol 12 (02) ◽  
pp. 183-205 ◽  
Author(s):  
RENCAI LÜ ◽  
KAIMING ZHAO

In this paper, all irreducible weight modules with finite dimensional weight spaces over the twisted Heisenberg–Virasoro algebra are determined. There are two different classes of them. One class is formed by simple modules of intermediate series, whose nonzero weight spaces are all 1-dimensional; the other class consists of the irreducible highest weight modules and lowest weight modules.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750123 ◽  
Author(s):  
S. Eswara Rao ◽  
Punita Batra

This paper classifies irreducible, integrable highest weight modules for “current Kac–Moody Algebras” with finite-dimensional weight spaces. We prove that these modules turn out to be modules of appropriate direct sums of finitely many copies of Kac–Moody Lie algebras.


Author(s):  
Volodymyr Mazorchuk ◽  
Kaiming Zhao

As the first step towards a classification of simple weight modules with finite dimensional weight spaces over Witt algebras Wn, we explicitly describe the supports of such modules. We also obtain some descriptions of the support of an arbitrary simple weight module over a ℤn-graded Lie algebra $\mathfrak{g}$ having a root space decomposition $\smash{\bigoplus_{\alpha\in\mathbb{Z}^n}\mathfrak{g}_\alpha}$ with respect to the abelian subalgebra $\mathfrak{g}_0$, with the property $\smash{[\mathfrak{g}_\alpha,\mathfrak{g}_\beta] = \mathfrak{g}_{\alpha+\beta}}$ for all α, β ∈ ℤn, α ≠ β (this class contains the algebra Wn).


2015 ◽  
Vol 15 (02) ◽  
pp. 1650029 ◽  
Author(s):  
Leandro Cagliero ◽  
Fernando Szechtman

Let 𝔤 be a finite-dimensional Lie algebra over a field of characteristic 0, with solvable radical 𝔯 and nilpotent radical 𝔫 = [𝔤, 𝔯]. Given a finite-dimensional 𝔤-module U, its nilpotency series 0 ⊂ U(1) ⊂ ⋯ ⊂ U(m) = U is defined so that U(1) is the 0-weight space of 𝔫 in U, U(2)/U(1) is the 0-weight space of 𝔫 in U/U(1), and so on. We say that U is linked if each factor of its nilpotency series is a uniserial 𝔤/𝔫-module, i.e. its 𝔤/𝔫-submodules form a chain. Every uniserial 𝔤-module is linked, every linked 𝔤-module is indecomposable with irreducible socle, and both converses fail. In this paper, we classify all linked 𝔤-modules when 𝔤 = 〈x〉 ⋉ 𝔞 and ad x acts diagonalizably on the abelian Lie algebra 𝔞. Moreover, we identify and classify all uniserial 𝔤-modules amongst them.


2013 ◽  
Vol 56 (3) ◽  
pp. 606-614 ◽  
Author(s):  
Volodymyr Mazorchuk ◽  
Kaiming Zhao

Abstract.We prove that for simple complex finite dimensional Lie algebras, affine Kac–Moody Lie algebras, the Virasoro algebra, and the Heisenberg–Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro algebras and for Heisenberg algebras.


Sign in / Sign up

Export Citation Format

Share Document