scholarly journals Classification of simple weight modules with finite-dimensional weight spaces over the Schrödinger algebra

2014 ◽  
Vol 443 ◽  
pp. 204-214 ◽  
Author(s):  
Brendan Dubsky
2016 ◽  
Vol 16 (07) ◽  
pp. 1750123 ◽  
Author(s):  
S. Eswara Rao ◽  
Punita Batra

This paper classifies irreducible, integrable highest weight modules for “current Kac–Moody Algebras” with finite-dimensional weight spaces. We prove that these modules turn out to be modules of appropriate direct sums of finitely many copies of Kac–Moody Lie algebras.


2012 ◽  
Vol 55 (3) ◽  
pp. 697-709 ◽  
Author(s):  
Xiangqian Guo ◽  
Rencai Lu ◽  
Kaiming Zhao

AbstractLet G be an arbitrary non-zero additive subgroup of the complex number field ℂ, and let Vir[G] be the corresponding generalized Virasoro algebra over ℂ. In this paper we determine all irreducible weight modules with finite-dimensional weight spaces over Vir[G]. The classification strongly depends on the index group G. If G does not have a direct summand isomorphic to ℤ (the integers), then such irreducible modules over Vir[G] are only modules of intermediate series whose weight spaces are all one dimensional. Otherwise, there is one further class of modules that are constructed by using intermediate series modules over a generalized Virasoro subalgebra Vir[G0] of Vir[G] for a direct summand G0 of G with G = G0 ⊕ ℤb, where b ∈ G \ G0. This class of irreducible weight modules do not have corresponding weight modules for the classical Virasoro algebra.


Author(s):  
Volodymyr Mazorchuk ◽  
Kaiming Zhao

As the first step towards a classification of simple weight modules with finite dimensional weight spaces over Witt algebras Wn, we explicitly describe the supports of such modules. We also obtain some descriptions of the support of an arbitrary simple weight module over a ℤn-graded Lie algebra $\mathfrak{g}$ having a root space decomposition $\smash{\bigoplus_{\alpha\in\mathbb{Z}^n}\mathfrak{g}_\alpha}$ with respect to the abelian subalgebra $\mathfrak{g}_0$, with the property $\smash{[\mathfrak{g}_\alpha,\mathfrak{g}_\beta] = \mathfrak{g}_{\alpha+\beta}}$ for all α, β ∈ ℤn, α ≠ β (this class contains the algebra Wn).


2018 ◽  
Vol 61 (1) ◽  
pp. 16-39 ◽  
Author(s):  
V. V. Bavula ◽  
T. Lu

AbstractA classification of simple weight modules over the Schrödinger algebra is given. The Krull and the global dimensions are found for the centralizer (H) (and some of its prime factor algebras) of the Cartan element H in the universal enveloping algebra of the Schrödinger (Lie) algebra. The simple (H)-modules are classified. The Krull and the global dimensions are found for some (prime) factor algebras of the algebra (over the centre). It is proved that some (prime) factor algebras of and (H) are tensor homological/Krull minimal.


2010 ◽  
Vol 12 (02) ◽  
pp. 183-205 ◽  
Author(s):  
RENCAI LÜ ◽  
KAIMING ZHAO

In this paper, all irreducible weight modules with finite dimensional weight spaces over the twisted Heisenberg–Virasoro algebra are determined. There are two different classes of them. One class is formed by simple modules of intermediate series, whose nonzero weight spaces are all 1-dimensional; the other class consists of the irreducible highest weight modules and lowest weight modules.


Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


Sign in / Sign up

Export Citation Format

Share Document