Irreducible ℤ+-modules of near-group fusion ring K(ℤ3, 3)

2018 ◽  
Vol 13 (4) ◽  
pp. 947-966
Author(s):  
Chengtao Yuan ◽  
Ruju Zhao ◽  
Libin Li
Keyword(s):  
2017 ◽  
Vol 28 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Scott Morrison ◽  
Kevin Walker

We explain a technique for discovering the number of simple objects in [Formula: see text], the center of a fusion category [Formula: see text], as well as the combinatorial data of the induction and restriction functors at the level of Grothendieck rings. The only input is the fusion ring [Formula: see text] and the dimension function [Formula: see text]. In particular, we apply this to deduce that the center of the extended Haagerup subfactor has 22 simple objects, along with their decompositions as objects in either of the fusion categories associated to the subfactor. This information has been used subsequently in [T. Gannon and S. Morrison, Modular data for the extended Haagerup subfactor (2016), arXiv:1606.07165 .] to compute the full modular data. This is the published version of arXiv:1404.3955 .


Ecology ◽  
2009 ◽  
Vol 90 (9) ◽  
pp. 2480-2490 ◽  
Author(s):  
Daniel Fortin ◽  
Marie-Eve Fortin ◽  
Hawthorne L. Beyer ◽  
Thierry Duchesne ◽  
Sabrina Courant ◽  
...  

2013 ◽  
Vol 21 (5) ◽  
pp. 1268-1278 ◽  
Author(s):  
Sorin I. Avram ◽  
Luminita Crisan ◽  
Alina Bora ◽  
Liliana M. Pacureanu ◽  
Stefana Avram ◽  
...  

2017 ◽  
Vol 6 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Tarik Siddik

The excitation functions for (n, p) reactions from reaction threshold to 24 MeV on some important iron (Fe) group target elements (20 ≤ Z ≤ 28) for astrophysical (n, p) reactions such as Si, Ca, Sc, Ti, Cr, Fe, Co and Ni were calculated using TALYS-1.0 nuclear model code. The new calculations on the excitation functions of 28Si(n, p)28Al, 29Si(n, p)29Al, 42Ca(n, p)42K, 45Sc(n, p)45Ca, 46Ti(n, p)46Sc, 53Cr(n, p)53V, 54Fe(n, p)54Mn, 57Fe(n, p)57Mn, 59Co(n, p)59Fe, 58Ni(n, p)58Co and 60Ni(n, p)60Co reactions have been carried out up to 24 MeV incident neutron energy. In these calculations, the compound nucleus and pre-equilibrium reaction mechanism studied extensively. According to these calculations, we assume that these model calculations can be applied to some heavy elements, ejected into interstellar medium by dramatic supernova events.


2006 ◽  
Vol 12 (33) ◽  
pp. 8566-8570 ◽  
Author(s):  
Roberta Cacciapaglia ◽  
Stefano Di Stefano ◽  
Luigi Mandolini

Sign in / Sign up

Export Citation Format

Share Document