incident neutron
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 32)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 16 (12) ◽  
pp. P12018
Author(s):  
Q. Yu ◽  
B. Tang ◽  
C. Huang ◽  
Y. Wei ◽  
S. Chen ◽  
...  

Abstract On 23rd August 2018, the China Spallation Neutron Source (CSNS) located in Dongguan operated 4 neutron instruments. In the future, twenty neutron spectrometers will be built to provide multidisciplinary platforms for scientific research by national institutions, universities, and industries. Engineering Material Diffractometer (EMD), which will be used for strain measurements in engineering materials and components, will be constructed at the Beamline 8 in 2022. A novel thermal neutron detector, which will comply with the requirements of EMD application, is being developed. This detector will consist of 6LiF/ZnS(Ag) scintillation screens, wavelength shifting fiber (WLSF) arrays, a silicon photomultiplier (SiPM) and Application Specific Integrated Circuit (ASIC) read-out electronics. Each scintillation screen will be inclined with respect to the incident neutron beam at a grazing angle θ = 17°. Such geometry will not only improve the spatial resolution of detectors but also the neutron detection efficiency. The prototype of detector module has been tested at the neutron Beamline 20 at the CSNS. The experimental results obtained for this prototype illustrate that the pixel size of detector module is 3 mm and the detection efficiency exceeds 40% at the neutron wavelength of 1 Å. Based on these results, we design and manufacture the final version of the detector for the EMD application, which is characterized by low power consumption, highly integrated and easy to install. 70 such detectors will be installed till the end of 2021.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ying Zheng ◽  
Jinxing Zheng ◽  
Xudong Wang

High-temperature superconducting material is a promising candidate to fabricate superconducting magnet for magnetic confinement fusion reactors. The DPA number of the 1 µm thick superconducting layer in a high temperature superconducting tape under neutron irradiation needs to be calculated to predict the property changes. The DPA cross sections, which ignore the spatial distribution of vacancies caused by PKAs, are commonly used to obtain the results of the damage energy and DPA. However, for geometric models with the thickness as small as 1 µm, the energy and angular distribution of PKAs reveal that a significant number of PKAs with relatively high energy tend to scatter forward and cross the boundary of model, so the thickness of model has the potential to affect the number of displaced atoms. In this paper, we developed a method based on Geant4 and SRIM to evaluate the deviation of the traditional analytic method caused by the thickness. Geant4 is used to obtain the location, direction, and energy of PKAs, while SRIM is used to track every PKA and obtain damage energy and the number of displaced atoms. The radiation damage calculation of simple thin plate models with different thicknesses and the tape model are conducted with the neutron energies from 1 to 14 MeV. The results show that PKAs need to be tracked continuously for models with thickness less than 10 µm and the deviation of the analytic formulas increases rapidly with the decrease of thickness. For the superconducting layer composed of four different elements in the tape, the deviation also depends on the proportion of each atomic species and the neutron-atom interaction cross sections under different incident neutron energy.


2021 ◽  
Vol 19 (50) ◽  
pp. 9-19
Author(s):  
Rıdvan Baldık

The biggest problem of structural materials for fusion reactor is the damage caused by the fusion product neutrons to the structural material. If this problem is overcomed, an important milestone will be left behind in fusion energy. One of the important problems of the structural material is that nuclei forming the structural material interacting with fusion neutrons are transmuted to stable or radioactive nuclei via (n, x) (x; alpha, proton, gamma etc.) reactions. In particular, the concentration of helium gas in the structural material increases through deuteron- tritium (D-T) and (n, α) reactions, and this increase significantly changes the microstructure and the properties of the structural materials. Therefore, in this study, the effects of the different nuclear level density models on the excitation functions of the (n, α) reactions on 46-50Ti isotopes, an attractive candidate for the structural material for fusion reactors, have been investigated for the first time. Also, the differential cross-sections with respect to alpha energy for the emission of alpha particles of the 46-50Ti (n, xα) reactions have been investigated at 14.1 MeV incident neutron energy. The calculations are performed using the two-component exciton model in the TALYS 1.9 code, and the results are compared with available experimental data. The results of this study will contribute to nuclear database as required for improving, design and operations of the important facilities as ITER (International Thermonuclear Experimental Reactor), DEMO (The demonstration power plant) and ENS (European Nuclear Society).


2021 ◽  
Vol 36 (25) ◽  
pp. 2150182
Author(s):  
Khusniddin K. Olimov ◽  
Vladimir V. Lugovoi ◽  
Kosim Olimov ◽  
Maratbek Shodmonov ◽  
Kadyr G. Gulamov ◽  
...  

To describe [Formula: see text] interactions with production of three [Formula: see text]-particles at incident neutron kinetic energy of 14 MeV in a nuclear (photo) emulsion, a Monte Carlo model is proposed for four channels of decay of an excited carbon-12 nucleus into three [Formula: see text]-particles. The Monte Carlo calculation results describe well the experimental data on the distribution of the angle between the three-dimensional momenta of all pairs of [Formula: see text]-particles in a collision event, on the distribution of the angle between the projections of the momentum vectors of all pairs of [Formula: see text]-particles in collision event on each of the coordinate planes, on the distribution of the sum of the kinetic energies of all pairs of [Formula: see text]-particles in a collision event, and the distribution of projections of the momenta of [Formula: see text]-particles on the coordinate planes. The best agreement of the Monte Carlo model results with the experimental data is achieved if the direct decay [Formula: see text] and decay through the formation of an intermediate beryllium nucleus [Formula: see text] are generated with equal probabilities, while the excitation energies of 3.04 MeV, 1.04 MeV, and 0.1 MeV for the beryllium nucleus are generated with relative weights of 75%, 15%, and 10%, respectively.


2021 ◽  
Vol 11 (16) ◽  
pp. 7359
Author(s):  
Mohamad Amin Bin Hamid ◽  
Hoe Guan Beh ◽  
Yusuff Afeez Oluwatobi ◽  
Xiao Yan Chew ◽  
Saba Ayub

In this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, 92Mo at incident neutron energy around 14 MeV. The machine learning algorithms used in this work are the Random Forest (RF), Gaussian Process Regression (GPR), and Support Vector Machine (SVM). The performance of each algorithm is determined and compared by evaluating the root mean square error (RMSE) and the correlation coefficient (R2). We demonstrate that machine learning can produce a better regression curve of the nuclear cross-section for the neutron-induced nuclear reaction of 92Mo isotopes compared to the simulation results using EMPIRE 3.2 and TALYS 1.9 from the previous literature. From our study, GPR is found to be better compared to RF and SVM algorithms, with R2=1 and RMSE =0.33557. We also employed the crude estimation of property (CEP) as inputs, which consist of simulation nuclear cross-section from TALYS 1.9 and EMPIRE 3.2 nuclear code alongside the experimental data obtained from EXFOR (1 April 2021). Although the Experimental only (EXP) dataset generates a more accurate cross-section, the use of CEP-only data is found to generate an accurate enough regression curve which indicates a potential use in training machine learning models for the nuclear reaction that is unavailable in EXFOR.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
A. M. McEvoy ◽  
H. W. Herrmann ◽  
Y. Kim ◽  
T. S. Sedillo ◽  
H. Geppert-Kleinrath ◽  
...  

Author(s):  
A. Sawalha ◽  
M.I. Jaghoub

In previous works, the imaginary surface and (or) the imaginary volume depths of the optical potential were parametrised as linear functions of the projectile’s incident energy and neutron-proton asymmetry (N − Z)/A of the target nucleus. However, the obtained asymmetry strength parameters were not robust nor unique. In this work, we determine values for the strength parameters by simultaneously fitting 38 angular distribution data sets corresponding to neutron elastic scattering off chains of isotopes. For each isotopic chain, we considered the data sets that are measured at the same energy. This minimises the effect of the known energy dependence of the optical model and projects the dependence on the asymmetry term, which in turn leads to more reliable values of the strength parameters. To demonstrate the significance of the obtained strength values, we use the model to predict elastic angular distributions for neutron scattering off nuclei not considered in the χ2analysis. Our theoretical angular distributions are in good agreement with the measured data and are also comparable to the predictions of local global models. In addition, our predicted total elastic and total reaction cross sections are in fair overall agreement with experiment. An additional result of this work is the determination of a global set of nonlocal parameters that describe neutron elastic scattering off nuclei that fall in the mass range 24 ≤ A ≤ 208 corresponding to incident neutron energies between ≈ 10 − 30 MeV.


2021 ◽  
Vol 256 ◽  
pp. 00006
Author(s):  
Irina Guseva ◽  
Alexei Gagarski ◽  
Friedrich Gönnenwein ◽  
Yuri Gusev

The shift of the angular distribution of different light charged particles in ternary fission of 235U induced by polarized neutrons, the so-called ROT effect, was estimated by modified trajectory calculations, which take into account the rotation of the compound nucleus. In previous publications only α-particles were considered. It is shown here that inclusion of tritons significantly improves the agreement of the energy dependence of the ROT effect with experiment while the inclusion of 5He particles practically does not influence this dependence. In particular, the change in the magnitude of the ROT effect depending on the energy of incident neutrons is correctly predicted. Also, the ROT effect for gamma quanta and neutrons in binary fission is discussed along the same lines, because all mentioned effects are proportional to the effective angular velocity of the compound nucleus at the moment of scission.


Sign in / Sign up

Export Citation Format

Share Document