Low dimensional modules over quantum complete intersections in two variables

2019 ◽  
Vol 14 (2) ◽  
pp. 449-474 ◽  
Author(s):  
Hanyang You ◽  
Pu Zhang
2008 ◽  
Vol 320 (1) ◽  
pp. 354-368 ◽  
Author(s):  
Petter Andreas Bergh ◽  
Steffen Oppermann

2009 ◽  
Vol 92 (6) ◽  
pp. 566-573 ◽  
Author(s):  
Petter Andreas Bergh

2018 ◽  
Vol 17 (11) ◽  
pp. 1850215 ◽  
Author(s):  
Karin Erdmann ◽  
Magnus Hellstrøm-Finnsen

We compute the Hochschild cohomology ring of the algebras [Formula: see text] over a field [Formula: see text] where [Formula: see text] and where [Formula: see text] is a primitive [Formula: see text]th root of unity. We find the dimension of [Formula: see text] and show that it is independent of [Formula: see text]. We compute explicitly the ring structure of the even part of the Hochschild cohomology modulo homogeneous nilpotent elements.


2008 ◽  
Vol 2 (5) ◽  
pp. 501-522 ◽  
Author(s):  
Petter Bergh ◽  
Karin Erdmann

2009 ◽  
Vol 322 (2) ◽  
pp. 479-488 ◽  
Author(s):  
Petter Andreas Bergh ◽  
Karin Erdmann

Author(s):  
Hanyang You ◽  
Pu Zhang

We describe the left regular module of a quantum complete intersection [Formula: see text] by the property that it is the unique finite-dimensional indecomposable left [Formula: see text]-module of Loewy length [Formula: see text] Using a reduction to [Formula: see text]-modules, we classify the [Formula: see text]-dimensional indecomposable left modules over quantum complete intersection [Formula: see text] in two variables, by explicitly giving their diagram presentations. Together with the existed work on indecomposable [Formula: see text]-modules of dimension [Formula: see text], we then know all the indecomposable [Formula: see text]-modules of dimension [Formula: see text].


1998 ◽  
Vol 184-185 (1-2) ◽  
pp. 706-709 ◽  
Author(s):  
W Ebeling
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document