Constitutive Expression of cry3A Gene in Transgenic Potato Plants for Resistance to Colorado Potato Beetle (CPB)

2021 ◽  
Author(s):  
Hamed Salehian ◽  
Hassan Rahnama ◽  
Sara Dezhsetan ◽  
Saeid Babaei
Plant Science ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Sébastien De Turck ◽  
Philippe Giordanengo ◽  
Anas Cherqui ◽  
Corinne Ducrocq-Assaf ◽  
Brigitte S Sangwan-Norreel

2015 ◽  
Vol 338 (7) ◽  
pp. 443-450 ◽  
Author(s):  
Xiaoxiao Mi ◽  
Xiangzhuo Ji ◽  
Jiangwei Yang ◽  
Lina Liang ◽  
Huaijun Si ◽  
...  

HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 249e-249
Author(s):  
Dominique Michaud ◽  
Serge Overney ◽  
Binh Nguyen-Quoc ◽  
Serge Yelle

In the past few years, transformation of plant genomes with proteinase inhibitor (PI) genes has been proposed as an effective way to produce insect-tolerant plants. For such a control approach, however, biochemical studies are necessary to assess the effect of PIs on not only insect digestive proteinases (target enzymes) but also plant endogenous proteinases (nontarget enzymes). As an example, transformation of potato (Solanum tuberosum L.) with oryzacystatin (OC) genes, two cysteine PIs, was considered for controlling Colorado potato beetle (CPB; Leptinotarsa decemlineata Say). The use of electrophoretic approaches and standard assays showed that CPB uses at least 14 cysteine proteinases for protein digestion throughout its development. Proteinases of the same class were also detected in sprouting potato tuber extracts, suggesting a potential interference of cPIs in transgenic plants. While OCs inhibit a significant fraction of CPB digestive proteinases, no inactivation of potato proteinases was detected. This apparent absence of direct interference suggests the real potential of OCs for producing CPB-tolerant transgenic potato plants.


1997 ◽  
Vol 10 (5) ◽  
pp. 635-645 ◽  
Author(s):  
Mark S. Abad ◽  
Salim M. Hakimi ◽  
Wojciech K. Kaniewski ◽  
Caius M. T. Rommens ◽  
Vladimir Shulaev ◽  
...  

The lesion-mimic mutants of certain plants display necrotic lesions resembling those of the hypersensitive response and activate local and systemic defense responses in the absence of pathogens. We have engineered a lesion-mimic phenotype in transgenic Russet Burbank potato plants through constitutive expression of a bacterio-opsin (bO) proton pump derived from Halobacterium halobium. Transgenic potato plants exhibiting a lesion-mimic phenotype had increased levels of salicylic acid and overexpressed several pathogenesis-related messenger RNAs, all hallmarks of systemic acquired resistance (SAR). The lesion-mimic plants also displayed enhanced resistance to the US1 isolate (A1 mating type) of a fungal pathogen, Phytophthora infestans, a causal agent of late blight disease. In contrast, little resistance was observed against the US8 isolate (A2 mating type) of this pathogen. Furthermore, a majority of the transgenic plants displaying the lesion-mimic phenotype had increased susceptibility to potato virus X. The tubers of these plants were not resistant to the bacterial pathogen Erwinia carotovora. These results indicate that expression of bO can result in the activation of defense responses in transgenic potato plants and show for the first time that bO expression can confer resistance to a pathogenic fungus. However, our results also demonstrate that like SAR, this “engineered” resistance is likely to be limited to certain pathogens and particular cultivars.


Planta ◽  
1999 ◽  
Vol 210 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Sophia Biemelt ◽  
Mohammad Reza Hajirezaei ◽  
Michael Melzer ◽  
Gerd Albrecht ◽  
Uwe Sonnewald

Sign in / Sign up

Export Citation Format

Share Document