cytochrome p450
Recently Published Documents


TOTAL DOCUMENTS

16606
(FIVE YEARS 1983)

H-INDEX

202
(FIVE YEARS 16)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Julie Massart ◽  
Karima Begriche ◽  
Jessica H. Hartman ◽  
Bernard Fromenty

Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261675
Author(s):  
Afroza Ferdouse ◽  
Rishi R. Agrawal ◽  
Madeleine A. Gao ◽  
Hongfeng Jiang ◽  
William S. Blaner ◽  
...  

Chronic alcohol consumption leads to a spectrum of liver disease that is associated with significant global mortality and morbidity. Alcohol is known to deplete hepatic vitamin A content, which has been linked to the pathogenesis of alcoholic liver disease. It has been suggested that induction of Cytochrome P450 2E1 (CYP2E1) contributes to alcohol-induced hepatic vitamin A depletion, but the possible contributions of other retinoid-catabolizing CYPs have not been well studied. The main objective of this study was to better understand alcohol-induced hepatic vitamin A depletion and test the hypothesis that alcohol-induced depletion of hepatic vitamin A is due to CYP-mediated oxidative catabolism. This hypothesis was tested in a mouse model of chronic alcohol consumption, including wild type and Cyp2e1 -/- mice. Our results show that chronic alcohol consumption is associated with decreased levels of hepatic retinol, retinyl esters, and retinoic acid. Moreover, the depletion of hepatic retinoid is associated with the induction of multiple retinoid catabolizing CYPs, including CYP26A1, and CYP26B1 in alcohol fed wild type mice. In Cyp2e1 -/- mice, alcohol-induced retinol decline is blunted but retinyl esters undergo a change in their acyl composition and decline upon alcohol exposure like WT mice. In conclusion, the alcohol induced decline in hepatic vitamin A content is associated with increased expression of multiple retinoid-catabolizing CYPs, including the retinoic acid specific hydroxylases CYP26A1 and CYP26B1.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 515
Author(s):  
Hua-Li Zuo ◽  
Hsi-Yuan Huang ◽  
Yang-Chi-Dung Lin ◽  
Xiao-Xuan Cai ◽  
Xiang-Jun Kong ◽  
...  

Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases, play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug interactions, usually involving competition with another drug for the same enzyme binding site. Compounds from herbal or natural products are involved in many scenarios in the context of such interactions. These interactions are decisive both in drug discovery regarding the synergistic effects, and drug application regarding unwanted side effects. Herein, this review was conducted as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly 500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal formulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional medicines causing serious adverse events. Conducting this review may help in metabolism-based drug combination discovery, and in the evaluation of the safety profile of natural products used therapeutically.


ACS Catalysis ◽  
2022 ◽  
pp. 1614-1625
Author(s):  
Matthew N. Podgorski ◽  
Joshua S. Harbort ◽  
Joel H. Z. Lee ◽  
Giang T.H. Nguyen ◽  
John B. Bruning ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261090
Author(s):  
Muhammad Umair Sial ◽  
Khalid Mehmood ◽  
Shafqat Saeed ◽  
Mureed Husain ◽  
Khawaja Ghulam Rasool ◽  
...  

Green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)] is a significant pest with a known history of insecticide resistance. Neonicotinoids could manage this pest; however, their frequent use led to the evolution of resistance in field populations of M. persicae. Toxicity data for neonicotinoid insecticides synergized with pipernyl butoxide (PBO) in a field population (FP) were collected and compared to a laboratory susceptible clone (SC) of aphids. The enhanced expression of metabolic resistance-related cytochrome P450 gene CYP6CY3 and an arginine-threonine substitution were detected in FP, causing a single point mutation (R81T) at β1 subunit of nicotinic acetylcholine receptor (nAChR) within D loop. High level of resistance to imidacloprid was developed in FP with 101-fold resistance ratio and moderate resistance level (10.9-fold) to acetamiprid. The results of PBO synergized bioassay suggested that cytochrome P450 enzymes were involved in the resistance to neonicotinoids. The mRNA transcriptional level of CYP6CY3 gene was significantly higher (3.74 fold) in FP compared to SC. The R81T mutation associated with neonicotinoid resistance had 26% resistant allele frequency in FP. Both P450 enzymes and R81T mutation of nAChR were found in field-evolved neonicotinoid resistance. It is concluded that field-evolved resistance in green peach aphid could be managed by using appropriate synergists such as PBO.


2022 ◽  
Vol 12 ◽  
Author(s):  
Weilin Zhu ◽  
Chunling Yang ◽  
Xiuli Chen ◽  
Qingyun Liu ◽  
Qiangyong Li ◽  
...  

To characterize the cold tolerance mechanism of the Pacific white shrimp (Litopenaeus vannamei), we performed single-cell RNA sequencing (scRNA-seq) of ∼5185 hepatopancreas cells from cold-tolerant (Lv-T) and common (Lv-C) L. vannamei at preferred and low temperatures (28°C and 10°C, respectively). The cells fell into 10 clusters and 4 cell types: embryonic, resorptive, blister-like, and fibrillar. We identified differentially expressed genes between Lv-T and Lv-C, which were mainly associated with the terms “immune system,” “cytoskeleton,” “antioxidant system,” “digestive enzyme,” and “detoxification,” as well as the pathways “metabolic pathways of oxidative phosphorylation,” “metabolism of xenobiotics by cytochrome P450,” “chemical carcinogenesis,” “drug metabolism-cytochrome P450,” and “fatty acid metabolism.” Reconstruction of fibrillar cell trajectories showed that, under low temperature stress, hepatopancreas cells had two distinct fates, cell fate 1 and cell fate 2. Cell fate 1 was mainly involved in signal transduction and sensory organ development. Cell fate 2 was mainly involved in metabolic processes. This study preliminarily clarifies the molecular mechanisms underlying cold tolerance in L. vannamei, which will be useful for the breeding of shrimp with greater cold tolerance.


2022 ◽  
Vol 20 (2) ◽  
pp. 231-237
Author(s):  
Waranya Chatuphonprasert ◽  
Kanokwan Jarukamjorn

Purpose: To determine the effect of the glutathione (GSH) suppressors styrene oxide (SO) and diethyl maleate (DEM) on the hepatic expression of cytochrome P450 family 1 (Cyp1) isoforms that are related to carcinogenesis including Cyp1a1, Cyp1a2, and Cyp1b1. Methods: Seven-week-old ICR mice were intraperitoneally injected with SO (150 and 300 mg/kg/day), DEM (175 and 350 mg/kg/day), or N-acetylcysteine (NAC; 300 and 600 mg/kg/day) for 7, 14, or 28 days. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, hepatic Cyp1 expression, total glutathione, reduced glutathione (GSH), and oxidized glutathione (GSSG) were determined. Results: ALT and AST levels were markedly increased by SO and DEM while GSH/GSSG ratio was decreased by SO in all treatments (p < 0.05), while high dose (350 mg/kg/day) DEM significantly suppressed GSH/GSSG ratio at 28 days (p < 0.05). The expressions of Cyp1a1, Cyp1a2, and Cyp1b1 were induced by SO and DEM, corresponding with induction of ethoxy/methoxy-resorufin O- dealkylase activities. Conclusion: The Cyp1 family metabolizes procarcinogens to carcinogenic DNA adducts; exposure to the industrial solvents, SO and DEM, raises the risk of carcinogenesis via GSH depletion coupled with Cyp1 induction.


2022 ◽  
Vol 8 (1) ◽  
pp. 69
Author(s):  
Yasmeen N. Ruma ◽  
Mikhail V. Keniya ◽  
Joel D. A. Tyndall ◽  
Brian C. Monk

The fungal cytochrome P450 lanosterol 14α-demethylase (CYP51) is required for the biosynthesis of fungal-specific ergosterol and is the target of azole antifungal drugs. Despite proven success as a clinical target for azole antifungals, there is an urgent need to develop next-generation antifungals that target CYP51 to overcome the resistance of pathogenic fungi to existing azole drugs, toxic adverse reactions and drug interactions due to human drug-metabolizing CYPs. Candida parapsilosis is a readily transmitted opportunistic fungal pathogen that causes candidiasis in health care environments. In this study, we have characterised wild type C. parapsilosis CYP51 and its clinically significant, resistance-causing point mutation Y132F by expressing these enzymes in a Saccharomyces cerevisiae host system. In some cases, the enzymes were co-expressed with their cognate NADPH-cytochrome P450 reductase (CPR). Constitutive expression of CpCYP51 Y132F conferred a 10- to 12-fold resistance to fluconazole and voriconazole, reduced to ~6-fold resistance for the tetrazoles VT-1161 and VT-1129, but did not confer resistance to the long-tailed triazoles. Susceptibilities were unchanged in the case of CpCPR co-expression. Type II binding spectra showed tight triazole and tetrazole binding by affinity-purified recombinant CpCYP51. We report the X-ray crystal structure of ScCYP51 in complex with VT-1129 obtained at a resolution of 2.1 Å. Structural analysis of azole—enzyme interactions and functional studies of recombinant CYP51 from C. parapsilosis have improved understanding of their susceptibility to azole drugs and will help advance structure-directed antifungal discovery.


2022 ◽  
Vol 23 (2) ◽  
pp. 722
Author(s):  
Erik Lidin ◽  
Mattias K. Sköld ◽  
Maria Angéria ◽  
Johan Davidsson ◽  
Mårten Risling

Hippocampal dysfunction contributes to multiple traumatic brain injury sequala. Female rodents’ outcome is superior to male which has been ascribed the neuroprotective sex hormones 17β-estradiol and progesterone. Cytochrome P450 1B1 (CYP1B1) is an oxidative enzyme influencing the neuroinflammatory response by creating inflammatory mediators and metabolizing neuroprotective 17β-estradiol and progesterone. In this study, we aimed to describe hippocampal CYP1B1 mRNA expression, protein presence of CYP1B1 and its key redox partner Cytochrome P450 reductase (CPR) in both sexes, as well as the effect of penetrating traumatic brain injury (pTBI). A total 64 adult Sprague Dawley rats divided by sex received pTBI or sham-surgery and were assigned survival times of 1-, 3-, 5- or 7 days. CYP1B1 mRNA was quantified using in-situ hybridization and immunohistochemistry performed to verify protein colocalization. CYP1B1 mRNA expression was present in all subregions but greatest in CA2 irrespective of sex, survival time or intervention. At 3-, 5- and 7 days post-injury, expression in CA2 was reduced in male rats subjected to pTBI compared to sham-surgery. Females subjected to pTBI instead exhibited increased expression in all CA subregions 3 days post-injury, the only time point expression in CA2 was greater in females than in males. Immunohistochemical analysis confirmed neuronal CYP1B1 protein in all hippocampal subregions, while CPR was limited to CA1 and CA2. CYP1B1 mRNA is constitutively expressed in both sexes. In response to pTBI, females displayed a more urgent but brief regulatory response than males. This indicates there may be sex-dependent differences in CYP1B1 activity, possibly influencing inflammation and neuroprotection in pTBI.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shoko Miyata ◽  
Noriaki Saku ◽  
Saeko Akiyama ◽  
Palaksha Kanive Javaregowda ◽  
Kenta Ite ◽  
...  

Abstract Background Many drugs have the potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in hepatocytes. Hepatocytes can be accurately evaluated for drug-mediated CYP3A4 induction; this is the gold standard for in vitro hepatic toxicology testing. However, the variation from lot to lot is an issue that needs to be addressed. Only a limited number of immortalized hepatocyte cell lines have been reported. In this study, immortalized cells expressing CYP3A4 were generated from a patient with drug-induced liver injury (DILI). Methods To generate DILI-derived cells with high expression of CYP3A4, a three-step approach was employed: (1) Differentiation of DILI-induced pluripotent stem cells (DILI-iPSCs); (2) Immortalization of the differentiated cells; (3) Selection of the cells by puromycin. It was hypothesized that cells with high cytochrome P450 gene expression would be able to survive exposure to cytotoxic antibiotics because of their increased drug-metabolizing activity. Puromycin, a cytotoxic antibiotic, was used in this study because of its rapid cytocidal effect at low concentrations. Results The hepatocyte-like cells differentiated from DILI-iPSCs were purified by exposure to puromycin. The puromycin-selected cells (HepaSM or SI cells) constitutively expressed the CYP3A4 gene at extremely high levels and exhibited hepatocytic features over time. However, unlike primary hepatocytes, the established cells did not produce bile or accumulate glycogen. Conclusions iPSC-derived hepatocyte-like cells with intrinsic drug-metabolizing enzymes can be purified from non-hepatocytes and undifferentiated iPSCs using the cytocidal antibiotic puromycin. The puromycin-selected hepatocyte-like cells exhibited characteristics of hepatocytes after immortalization and may serve as another useful source for in vitro hepatotoxicity testing of low molecular weight drugs.


Sign in / Sign up

Export Citation Format

Share Document