Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization

2011 ◽  
Vol 6 (4) ◽  
pp. 731-748 ◽  
Author(s):  
Q. L. Wang ◽  
S. J. Li
2020 ◽  
Vol 37 (02) ◽  
pp. 2050002
Author(s):  
Zhenhua Peng ◽  
Zhongping Wan

In view of the structural advantage of second-order composed derivatives, the purpose of this paper is to analyze quantitatively the behavior of perturbation maps for the first time by using this concept. First, new concepts of the second-order composed adjacent derivative and the second-order composed lower Dini derivative are introduced. Some relationships among the second-order composed contingent derivative, the second-order composed adjacent derivative and the second-order composed lower Dini derivative are discussed. Second, the relationships between second-order composed lower Dini derivable and Aubin property are provided. Third, by virtue of second-order composed contingent derivatives and the above relationships, some results concerning second-order sensitivity analysis are established without the assumption of the locally Lipschitz property or the locally Hölder continuity. Finally, we give some complete characterizations of second-order composed contingent derivatives of the perturbation maps.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1348 ◽  
Author(s):  
Ramu Dubey ◽  
Lakshmi Narayan Mishra ◽  
Luis Manuel Sánchez Ruiz

In this article, a pair of nondifferentiable second-order symmetric fractional primal-dual model (G-Mond–Weir type model) in vector optimization problem is formulated over arbitrary cones. In addition, we construct a nontrivial numerical example, which helps to understand the existence of such type of functions. Finally, we prove weak, strong and converse duality theorems under aforesaid assumptions.


Sign in / Sign up

Export Citation Format

Share Document