scholarly journals Evaluation of somatic embryo production during embryogenic tissue proliferation stage using morphology, maternal genotype, proliferation rate and tissue age of Pinus thunbergii Parl

Author(s):  
Tingyu Sun ◽  
Yanli Wang ◽  
Lihua Zhu ◽  
Xiaowei Liu ◽  
Qingtong Wang ◽  
...  

AbstractTo determine the optimal embryogenic capacity (somatic embryo production) of the selected elite nematode-resistant genotypes of Pinus thunbergii, variables such as embryogenic tissue (ET) morphology, maternal genotype, proliferation rate and tissue age were analyzed. ET morphology and histological evaluation of the proliferation stage showed a decrease in filamentous clump and protuberant surfaces and a decline in the acetocarmine-staining area, which indicates a decrease in somatic embryo production (SEP). Variations in cell physiology during the proliferation stage showed that SEP was positively correlated with soluble sugars and proteins, but negatively correlated with starch, peroxidase, and superoxidase. In addition, SEP was significantly (p < 0.001) affected by maternal genotype, tissue age and proliferation rate. Moreover, SEP was positively correlated with proliferation rate (r = 0.98, p < 0.001), but negatively correlated with tissue age (r =  − 0.95, p < 0.001). In general, the results suggest that SEP could be assessed in ET proliferation stages by the apparent cell morphology, histology, proliferation rate and tissue age, which provides novel insights for evaluating the ET maturation capacity (number of somatic embryos) during the proliferation stage of P. thunbergii somatic embryogenesis.

2019 ◽  
Vol 49 (12) ◽  
pp. 1604-1612
Author(s):  
Tingyu Sun ◽  
Yanli Wang ◽  
Lihua Zhu ◽  
Xiaoqin Wu ◽  
Jianren Ye

Pine wilt disease (PWD) is a severe threat to pine forests in East Asia. Screening and breeding of resistant varieties is a very effective way to prevent and control PWD; however, no reliable somatic embryogenesis system has yet been developed for the elite nematode-resistant Pinus thunbergii Parl. line. In this study, we studied the plant regeneration via somatic embryogenesis of nematode-resistant P. thunbergii. Initiation of embryogenic tissue was significantly affected by seed family (p = 0.017), immature zygotic embryo stage (p = 0.032), and initiation medium (p = 0.004). Seed family 37 was the most favorable female parent for initiation of P. thunbergii. Furthermore, the initiation rate increased from the pre-embryonic stage to the cleavage polyembryonic stage. The optimal medium was I2, containing 2,4-dichlorophenoxyacetic acid (9 μmol·L−1) and 6-benzyladenine (4.4 μmol·L−1). A statistically significant interaction between cell line and subculture time (24 months) was observed in the influence on proliferation rate, somatic embryo production, and percentage germination (p < 0.001). In this study, the highest somatic embryo production was achieved using cell line 37-1 (1983 somatic embryos per gram fresh mass), with approximately 83.5% of somatic embryos germinating after transferring to germination medium, of which 77.6% converted into plantlets.


2000 ◽  
Vol 23 (4) ◽  
pp. 865-868 ◽  
Author(s):  
Gisele Aparecida Bonacin ◽  
Antonio Orlando Di Mauro ◽  
Roberto Carlos de Oliveira ◽  
Dilermando Perecin

The embryogenic capability of five soybean cultivars (Renascença, IAS-5, IAC-17, BR-16 and FT-Cometa) was studied at different auxin concentrations (8, 10 and 12 mg/l naphthalene acetic acid, NAA), at different pHs (5.8 and 7.0) and at low (8-12 muEm-2 s-1) and high (27-33 mEm-2 s-1) light intensities. The experimental design was completely randomized with four replications. Immature cotyledons 4-6 mm in length were placed in the six induction mediums evaluated and submitted to two light intensities. Twenty immature cotyledons per cultivar were placed on each Petri dish, which was considered to be one replication. The number of somatic embryos per treatment per replication was counted. The results showed genotype influence on somatic embryogenic capability of each cultivar, with the most embryogenic cultivars being BR-16, FT-Cometa and IAS-5. Auxin concentration and pH value also influenced somatic embryo production, with 10 mg/l NAA being the best auxin concentration and 7.0 the best pH value. The interactions cultivar x auxin, auxin x pH and pH x light were significant, while other double interactions were not. All triple and quadruple interactions were significant, except cultivar x pH x light. No significant differences in somatic embryo production were observed in medium with different pHs or when the Petri dishes containing immature cotyledons were exposed to the two light intensities evaluated. However, a higher number of somatic embryos was produced when the medium pH was adjusted to 7.0.


1992 ◽  
Vol 26 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Plamen D. Denchev ◽  
Alexander I. Kuklin ◽  
Alan H. Scragg

Sign in / Sign up

Export Citation Format

Share Document