Cell Line
Recently Published Documents


TOTAL DOCUMENTS

62721
(FIVE YEARS 15057)

H-INDEX

281
(FIVE YEARS 43)

2022 ◽  
Vol 124 (2) ◽  
pp. 151849
Author(s):  
Bryan Ôrtero Perez Gonçalves ◽  
Warne Pedro de Andrade ◽  
Sílvia Ligório Fialho ◽  
Luciana Maria Silva

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 280
Author(s):  
Laura Bizzozero ◽  
Margherita Pergolizzi ◽  
Davide Pascal ◽  
Elena Maldi ◽  
Giulia Villari ◽  
...  

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor–nerve interactions, we assessed a potential NLGN1–GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


2022 ◽  
Vol 23 (2) ◽  
pp. 875
Author(s):  
Pontus Öhlund ◽  
Nicolas Delhomme ◽  
Juliette Hayer ◽  
Jenny C. Hesson ◽  
Anne-Lie Blomström

Understanding the flavivirus infection process in mosquito hosts is important and fundamental in the search for novel control strategies that target the mosquitoes’ ability to carry and transmit pathogenic arboviruses. A group of viruses known as insect-specific viruses (ISVs) has been shown to interfere with the infection and replication of a secondary arbovirus infection in mosquitoes and mosquito-derived cell lines. However, the molecular mechanisms behind this interference are unknown. Therefore, in the present study, we infected the Aedes albopictus cell line U4.4 with either the West Nile virus (WNV), the insect-specific Lammi virus (LamV) or an infection scheme whereby cells were pre-infected with LamV 24 h prior to WNV challenge. The qPCR analysis showed that the dual-infected U4.4 cells had a reduced number of WNV RNA copies compared to WNV-only infected cells. The transcriptome profiles of the different infection groups showed a variety of genes with altered expression. WNV-infected cells had an up-regulation of a broad range of immune-related genes, while in LamV-infected cells, many genes related to stress, such as different heat-shock proteins, were up-regulated. The transcriptome profile of the dual-infected cells was a mix of up- and down-regulated genes triggered by both viruses. Furthermore, we observed an up-regulation of signal peptidase complex (SPC) proteins in all infection groups. These SPC proteins have shown importance for flavivirus assembly and secretion and could be potential targets for gene modification in strategies for the interruption of flavivirus transmission by mosquitoes.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Paul Prasse ◽  
Pascal Iversen ◽  
Matthias Lienhard ◽  
Kristina Thedinga ◽  
Chris Bauer ◽  
...  

ABSTRACT Computational drug sensitivity models have the potential to improve therapeutic outcomes by identifying targeted drug components that are likely to achieve the highest efficacy for a cancer cell line at hand at a therapeutic dose. State of the art drug sensitivity models use regression techniques to predict the inhibitory concentration of a drug for a tumor cell line. This regression objective is not directly aligned with either of these principal goals of drug sensitivity models: We argue that drug sensitivity modeling should be seen as a ranking problem with an optimization criterion that quantifies a drug’s inhibitory capacity for the cancer cell line at hand relative to its toxicity for healthy cells. We derive an extension to the well-established drug sensitivity regression model PaccMann that employs a ranking loss and focuses on the ratio of inhibitory concentration and therapeutic dosage range. We find that the ranking extension significantly enhances the model’s capability to identify the most effective anticancer drugs for unseen tumor cell profiles based in on in-vitro data.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 413
Author(s):  
Maiko Sasaki ◽  
Yoonhee Jung ◽  
Paula North ◽  
Justin Elsey ◽  
Keith Choate ◽  
...  

GNAQ is mutated in vascular and melanocytic lesions, including vascular malformations and nevi. No in vivo model of GNAQ activation in endothelial cells has previously been described. We introduce mutant GNAQ into a murine endothelial cell line, MS1. The resultant transduced cells exhibit a novel phenotype in vivo, with extensive vasoformative endothelial cells forming aberrant lumens similar to those seen in vascular malformations. ATAC-seq analysis reveals activation of c-Kit in the novel vascular malformations. We demonstrate that c-Kit is expressed in authentic human Sturge–Weber vascular malformations, indicating a novel druggable target for Sturge–Weber syndrome. Since c-Kit is targeted by the FDA-approved drug imatinib, we tested the ability of imatinib on the phenotype of the vascular malformations in vivo. Imatinib treated vascular malformations are significantly smaller and have decreased supporting stromal cells surrounding the lumen. Imatinib may be useful in the treatment of human vascular malformations that express c-Kit, including Sturge–Weber syndrome.


Author(s):  
Divya Lodha ◽  
Jamuna R. Subramaniam

Abstract Objectives The main aim of this study is to identify the deleterious effects of indiscriminately consumed high fructose on motor neurons that are critically affected in many neurological conditions causing movement disorders including paralysis. Materials and Methods Neuroblastoma x mouse spinal cord motor neuron cell line (NSC-34) motor neuron cell lines were treated with high fructose and oxygen supplementation (18.8%) and assayed for cell proliferation/death, reactive oxygen species (ROS) generation, and oxidative stress response induction Statistical Analysis Mean and standard deviation, significance with and without high fructose (F)-5%, were estimated by t-tests using GraphPad Prism ver. 8.2.1 Results F-5% along with O2 (18.8%) annihilates the cells (∼85%) by day10 and inhibits cell division as observed by the presence of multinucleated cells. Unexpectedly, 1 to 2% of cells that survived, differentiated and displayed progressive neurite extension. Though not healthy, they were viable up to 80 days. F-5% increased ROS levels (∼34%) not accompanied by concomitant enhanced expression of oxidative stress response regulator, the transcription factor, nrf-2, or downstream effector, sod-1. Conclusion High fructose is extremely harmful to NSC-34 motor neuron cell line.


2022 ◽  
Vol 9 (1) ◽  
pp. 35
Author(s):  
Robert T. Brady ◽  
Fergal J. O’Brien ◽  
David A. Hoey

Bone is a dynamic organ that can adapt its structure to meet the demands of its biochemical and biophysical environment. Osteocytes form a sensory network throughout the tissue and orchestrate tissue adaptation via the release of soluble factors such as a sclerostin. Osteocyte physiology has traditionally been challenging to investigate due to the uniquely mineralized extracellular matrix (ECM) of bone leading to the development of osteocyte cell lines. Importantly, the most widely researched and utilized osteocyte cell line: the MLO-Y4, is limited by its inability to express sclerostin (Sost gene) in typical in-vitro culture. We theorised that culture in an environment closer to the in vivo osteocyte environment could impact on Sost expression. Therefore, this study investigated the role of composition and dimensionality in directing Sost expression in MLO-Y4 cells using collagen-based ECM analogues. A significant outcome of this study is that MLO-Y4 cells, when cultured on a hydroxyapatite (HA)-containing two-dimensional (2D) film analogue, expressed Sost. Moreover, three-dimensional (3D) culture within HA-containing collagen scaffolds significantly enhanced Sost expression, demonstrating the impact of ECM composition and dimensionality on MLO-Y4 behaviour. Importantly, in this bone mimetic ECM environment, Sost expression was found to be comparable to physiological levels. Lastly, MLO-Y4 cells cultured in these novel conditions responded accordingly to fluid flow stimulation with a decrease in expression. This study therefore presents a novel culture system for the MLO-Y4 osteocyte cell line, ensuring the expression of an important osteocyte specific gene, Sost, overcoming a major limitation of this model.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Takanobu Takata ◽  
Akiko Sakasai-Sakai ◽  
Masayoshi Takeuchi

Background: The death of pancreatic islet β-cells (β-cells), which are the insulin-producing cells, promote the pathology in both Type 1 and Type 2 diabetes mellitus (DM) (T1DM and T2DM), and they are protected by autophagy which is one of the mechanisms of cell survival. Recently, that some advanced glycation end-products (AGEs), such as methylglyoxial-derived AGEs and Nε-carboxymethyllysine, induced the death of β-cells were revealed. In contrast, we had reported AGEs derived from glyceraldehyde (GA, the metabolism intermediate of glucose and fructose) are considered to be toxic AGEs (TAGE) due to their cytotoxicity and role in the pathogenesis of T2DM. More, serum levels of TAGE are elevated in patients with T1 and T2DM, where they exert cytotoxicity. Aim: We researched the cytotoxicity of intracellular and extracellular TAGE in β-cells and the possibility that intracellular TAGE were associated with autophagy. Methods: 1.4E7 cells (a human β-cell line) were treated with GA, and analyzed viability, quantity of TAGE, microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, and p62. We also examined the viability of 1.4E7 cells treated with TAGE-modified bovine serum albumin, a model of TAGE in the blood. Results: Intracellular TAGE induced death of 1.4E7 cells, decrease of LC3-I, LC3-II, and p62. Extracellular TAGE didn’t show cytotoxicity in the physiological concentration. Conclusion: Intracellular TAGE induced death of β-cells more strongly than extracellular TAGE, and may suppress autophagy via reduction of LC3-I, LC3-II, and p62 to inhibit the degradation of them.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Yoshiyuki Kubo ◽  
Sakiko Ishizuka ◽  
Takeru Ito ◽  
Daisuke Yoneyama ◽  
Shin-ichi Akanuma ◽  
...  

Taurine transport was investigated at the blood–testis barrier (BTB) formed by Sertoli cells. An integration plot analysis of mice showed the apparent influx permeability clearance of [3H]taurine (27.7 μL/(min·g testis)), which was much higher than that of a non-permeable paracellular marker, suggesting blood-to-testis transport of taurine, which may involve a facilitative taurine transport system at the BTB. A mouse Sertoli cell line, TM4 cells, showed temperature- and concentration-dependent [3H]taurine uptake with a Km of 13.5 μM, suggesting that the influx transport of taurine at the BTB involves a carrier-mediated process. [3H]Taurine uptake by TM4 cells was significantly reduced by the substrates of taurine transporter (TauT/SLC6A6), such as β-alanine, hypotaurine, γ-aminobutyric acid (GABA), and guanidinoacetic acid (GAA), with no significant effect shown by L-alanine, probenecid, and L-leucine. In addition, the concentration-dependent inhibition of [3H]taurine uptake revealed an IC50 of 378 μM for GABA. Protein expression of TauT in the testis, seminiferous tubules, and TM4 cells was confirmed by Western blot analysis and immunohistochemistry by means of anti-TauT antibodies, and knockdown of TauT showed significantly decreased [3H]taurine uptake by TM4 cells. These results suggest the involvement of TauT in the transport of taurine at the BTB.


Sign in / Sign up

Export Citation Format

Share Document