plant regeneration
Recently Published Documents


TOTAL DOCUMENTS

3487
(FIVE YEARS 252)

H-INDEX

70
(FIVE YEARS 6)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamid Reza SABAGHI ◽  
Gholamreza SHARIFI-SIRCHI ◽  
Pejman AZADI ◽  
Mohammad Hossein AZIMI

ABSTRACT Callus induction and plant regeneration are important steps of in vitro plant breeding of ornamental plants. In this study, the effects of different combinations of plant growth regulators (PGRs), promoters, and minerals on callus induction and plant regeneration in different carnation cultivars were studied in a completely randomized design with three replications. For callus induction, 16 different combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BA), 1-naphthaleneacetic acid (NAA), and casein hydrolysate (CH) were studied using in vitro leaf explants. The Murashige and Skoog (MS) medium supplemented with 0.2 mg·dm-3 of 2,4-D and 200 mg·dm-3 of CH showed the highest frequency of callus induction. Among the cultivars, ‘Noblesse’ showed the highest rate of callus induction (91.67%). Regarding regeneration, BA, NAA, silver nitrate (AgNO3), and adenine hemisulfate (As) were used in ten different combinations. The ‘Cameron’, ‘Tabasco’, and ‘Noblesse’ cultivars with 95.24% regeneration percentage showed the highest rate of plant regeneration. Generally, in most cultivars, the highest regeneration rate and shoot number per explant were found in the MS medium supplemented with 3 mg·dm-3 of BA, 0.6 mg·dm-3 of NAA, 5 mg·dm-3 of AgNO3, and 40 mg·dm-3 of As. According to the results, the highest regeneration frequency was obtained when 40 mg·dm-3 of As was added to the medium. Finally, the flow cytometry analysis indicated that there were no significant differences between in vitro regenerated and control plants in terms of DNA ratios.


Author(s):  
Jéssica Cristina Barbosa Ferreira ◽  
Inaê Mariê de Araújo Silva-Cardoso ◽  
Rennan de Oliveira Meira ◽  
Jonny Everson Scherwinski-Pereira

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0254265
Author(s):  
Lin Yang ◽  
Jinge Sun ◽  
Congyu Yan ◽  
Junyi Wu ◽  
Yaya Wang ◽  
...  

Plant regeneration is important for vegetative propagation, detoxification and the obtain of transgenic plant. We found that duckweed regeneration could be enhanced by regenerating callus. However, very little is known about the molecular mechanism and the release of volatile organic compounds (VOCs). To gain a global view of genes differently expression profiles in callus and regenerating callus, genetic transcript regulation has been studied. Auxin related genes have been significantly down-regulated in regenerating callus. Cytokinin signal pathway genes have been up-regulated in regenerating callus. This result suggests the modify of auxin and cytokinin balance determines the regenerating callus. Volatile organic compounds release has been analysised by gas chromatography/ mass spectrum during the stage of plant regeneration, and 11 kinds of unique volatile organic compounds in the regenerating callus were increased. Cyclohexane treatment enhanced duckweed regeneration by initiating root. Moreover, Auxin signal pathway genes were down-regulated in callus treated by cyclohexane. All together, these results indicated that cyclohexane released by regenerating callus promoted duckweed regeneration. Our results provide novel mechanistic insights into how regenerating callus promotes regeneration.


2022 ◽  
Author(s):  
Leticia da Silva Araújo ◽  
Virginia Silva Carvalho ◽  
Andressa Leal Generoso ◽  
Josefa Grasiela Silva Santana ◽  
Glaziele Campbell ◽  
...  

Abstract Passiflora setacea DC (Passifloraceae) is considered an important species in the genetic breeding of passion fruit. However, its use is limited due to low seed germination. This paper aimed to study the effect of cytokinins 6-benzyladenine (BA) and thidiazuron (TDZ) on the in vitro morphogenesis of P. setacea using three explants: hypocotyl, nodal segment, and root segment. The explants were induced to morphogenesis in MS medium modified and with different concentrations of BA and TDZ. After 55 days, the percentage of calluses and shoots were evaluated, and anatomical characterization was performed. The three explants used in the in vitro morphogenesis of P. setacea showed callus and shoots formation, but in greater numbers in the nodal segments treated with BA. TDZ isolated affected equal to or less than BA on callus and shoots formation for the three explants. Direct and indirect organogenesis was observed in the three types of explants. From the results obtained for plant regeneration via in vitro morphogenesis of P. setacea, it is recommended to use a nodal segment in MSM medium and supplemented with 2.22 μmol L-1 of BA.


2021 ◽  
Vol 7 (3) ◽  
pp. 533-539
Author(s):  
Emine YURTERİ ◽  
Merve AKSU ◽  
Haydar KÜPLEMEZ ◽  
Aysel ÖZCAN ◽  
Fatih SEYİS
Keyword(s):  

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Renata Orłowska ◽  
Katarzyna Anna Pachota ◽  
Piotr Androsiuk ◽  
Piotr Tomasz Bednarek

Metal ions in the induction medium are essential ingredients allowing green plant regeneration. For instance, Cu(II) and Ag(I) ions may affect the mitochondrial electron transport chain, influencing the Yang cycle and synthesis of S-adenosyl-L-methionine, the prominent donor of the methylation group for all cellular compounds, including cytosines. If the ion concentrations are not balanced, they can interfere with the proper flow of electrons in the respiratory chain and ATP production. Under oxidative stress, methylated cytosines might be subjected to mutations impacting green plant regeneration efficiency. Varying Cu(II) and Ag(I) concentrations in the induction medium and time of anther culture, nine trials of anther culture-derived regenerants of triticale were derived. The methylation-sensitive AFLP approach quantitative characteristics of tissue culture-induced variation, including sequence variation, DNA demethylation, and DNA de novo methylation for all symmetric-CG, CHG, and asymmetric-CHH sequence contexts, were evaluated for all trials. In addition, the implementation of mediation analysis allowed evaluating relationships between factors influencing green plant regeneration efficiency. It was demonstrated that Cu(II) ions mediated relationships between: (1) de novo methylation in the CHH context and sequence variation in the CHH, (2) sequence variation in CHH and green plant regeneration efficiency, (3) de novo methylation in CHH sequences and green plant regeneration, (4) between sequence variation in the CHG context, and green plant regeneration efficiency. Cu(II) ions were not a mediator between de novo methylation in the CG context and green plant regeneration. The latter relationship was mediated by sequence variation in the CG context. On the other hand, we failed to identify any mediating action of Ag(I) ions or the moderating role of time. Furthermore, demethylation in any sequence context seems not to participate in any relationships leading to green plant regeneration, sequence variation, and the involvement of Cu(II) or Ag(I) as mediators.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Sitong Liu ◽  
Xinfeng Wang ◽  
Ning Ding ◽  
Yutong Liu ◽  
Ning Li ◽  
...  

Plants have the salient biological property of totipotency, i.e., the capacity to regenerate a whole plant from virtually any kind of fully differentiated somatic cells after a process of dedifferentiation. This property has been well-documented by successful plant regeneration from tissue cultures of diverse plant species. However, the accumulation of somaclonal variation, especially karyotype alteration, during the tissue culture process compromises cell totipotency. In this respect, Chinese ginseng (Panax ginseng C. A. Mey.) is an exception in that it shows little decline in cell totipotency accompanied by remarkable chromosomal stability even after prolonged tissue cultures. However, it remains unclear whether chromosomal level stability necessarily couples with molecular genetic stability at the nucleotide sequence level, given that the two types of stabilities are generated by largely distinct mechanisms. Here, we addressed this issue by genome-wide comparisons at the single-base resolution of long-term tissue culture-regenerated P. ginseng plants. We identified abundant single nucleotide polymorphisms (SNPs) that have accumulated in cultured ginseng callus and are retained in the process of plant regeneration. These SNPs did not occur at random but showed differences among chromosomes and biased regional aggregation along a given chromosome. In addition, our results demonstrate that, compared with the overall genes, genes related to processes of cell totipotency and chromosomal stability possess lower mutation rates at both coding and flanking regions. In addition, collectively, the mutated genes exhibited higher expression levels than non-mutated genes and are significantly enriched in fundamental biological processes, including cellular component organization, development, and reproduction. These attributes suggest that the precipitated molecular level genetic variations during the process of regeneration in P. ginseng are likely under selection to fortify normal development. As such, they likely did not undermine chromosomal stability and totipotency of the long-term ginseng cultures.


Sign in / Sign up

Export Citation Format

Share Document