soluble sugars
Recently Published Documents


TOTAL DOCUMENTS

1359
(FIVE YEARS 567)

H-INDEX

51
(FIVE YEARS 9)

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 75
Author(s):  
Amira K. Nasrallah ◽  
Ahmed A. Kheder ◽  
Maimona A. Kord ◽  
Ahmed S. Fouad ◽  
Mohamed M. El-Mogy ◽  
...  

Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.


2022 ◽  
Vol 12 (4) ◽  
pp. 628-634
Author(s):  
V. P. Bessonova ◽  
A. S. Chonhova

The long-term increases in average temperature and intensification of droughts which characterise the current state of the Earth’s climate system have a negative impact on forest ecosystems and can lead to a decrease in their area and deterioration of the living conditions of their components. In the conditions of the Ukrainian Steppe an important environmental, antierosion, water-protective and soil-protective role belongs to the ravine forests. The most valuable component of the ravine forests is presented by natural populations of common oak (Quercus robur L.), which are able to tolerate the arid climate typical of the steppe region. But with global warming, the endurance of this species is changing. It is believed that a significant role in plant adaptation to drought and high temperatures may belong to non-structural carbohydrates. Therefore, it is important to study changes in the concentration of these substances in the leaves of this leading species under the action of adverse hydrothermal conditions. The article analyzes the content and dynamics of soluble sugars (glucose, fructose, sucrose) and starch in the leaves of Quercus robur L. under different forest growth conditions of the ravine forest (hygromesophilic (CL2–3), mesoxerophilic (CL1) and xerophilic (CL0)). The research was conducted in the forest in the Viyskove area (steppe zone of Ukraine) in the thalweg and at different levels of slope of southern exposure. Content of glucose, fructose, sugar and starch in Quercus robur leaves was determined. It was found that when exposed to high temperatures and increasing water stress during the vegetation period in xerophilic (CL0–1) and mesoxerophilic (CL1) forest growth conditions, the concentration of both glucose and sucrose in the leaves of Q. robur increases and it becomes much higher than in conditions of more optimal water supply. At the same time, the disaccharide content increases more significantly than that of monosaccharide. The greatest amount of these sugars is observed in the driest months (July, August), when conditions for providing plants with water are the most stressful. When water stress grows the increase in concentration of glucose and sucrose is correlated with reduction of starch content. It has been found that the concentration of fructose in Q. robur leaves in droughty conditions of growing was comparable to more favourable conditions of moisture. In September, there is a decline in the content of all forms of non-structural carbohydrates in the leaves of plants of all variants compared to the previous month, especially in conditions of adverse water supply. Therefore, forest growth conditions do not affect the nature of the dynamics of soluble sugars and starch in the leaves of Q. robur, although they change their quantitative indicators. Based on the protective function of sugars under the action of stressors on plants, we can assume that in conditions of significant lack of moisture in the soil their accumulation in the leaves in areas with mesoxerophilic and xerophilic hygrotopes plays an important role in increasing Q. robur drought resistance.


2022 ◽  
Author(s):  
R.A. Drozdov ◽  
M.A. Kozhukhova ◽  
T.V. Barkhatova ◽  
A.A. Kushnereva ◽  
T.A Drozdova

This article presents research results of the chemical composition, physical and chemical properties and biotechnological potential of dietary fiber concentrates (DFCs) obtained from secondary raw materials for the production of carrot and pumpkin juices.It has been established that DFCs, along with dietary fibers (cellulose, hemicellulose, pectin, lignin), contain soluble sugars, nitrogenous substances and carotenoids, which determine their physiological activity and technological properties when used in dairy products fermented with probiotics.The effect of DFCs on the fermentation kinetics of dairy-vegetable mixtures with a starter containing lacto-, bifidobacteria and propionic acid microorganisms was studied. The optimal concentration and the degree of dispersion of carrot and pumpkin DFCs was determined. The findings can be used to ensureoptimal intensification of the fermentation process and the production of probiotic fermented milk drinks with a pleasant taste. Keywords: dietary fiber, secondary raw materials, functional dairy products, prebiotics, probiotics, enzyme kinetics, probiotic drinks


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Mariarosaria De Pascali ◽  
Marzia Vergine ◽  
Carmine Negro ◽  
Davide Greco ◽  
Federico Vita ◽  
...  

Xylella fastidiosa (Xf) subsp. pauca “De Donno” is the etiological agent of “Olive Quick Decline Syndrome” (OQDS) on olive trees (Olea europaea L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer. In order to evaluate how the two stress factors overlap each other, the carbohydrate content and the expression patterns of genes related to carbohydrate metabolism have been evaluated in two olive cvs trees (Cellina di Nardò, susceptible to Xf, and Leccino, resistant to Xf) reporting transcriptional dynamics elicited by Xf infection, drought, or combined stress (drought/Xf). In the Xf-susceptible Cellina di Nardò plants, Xf and its combination with drought significantly decrease total sugars compared to control (−27.0% and −25.7%, respectively). In contrast, the Xf-resistant Leccino plants show a more limited reduction in sugar content in Xf-positive conditions (−20.1%) and combined stresses (−11.1%). Furthermore, while the amount of glucose decreases significantly in stressed Cellina di Nardò plants (≈18%), an increase was observed in Leccino plants under drought/Xf combined stresses (+11.2%). An opposite behavior among cvs was also observed for sucrose, as an accumulation of the disaccharide was recorded in stressed Leccino plants (≈37%). The different response to combined stress by Xf-resistant plants was confirmed considering genes coding for the sucrose or monosaccharide transporter (OeSUT1, OeMST2), the cell wall or vacuolar invertase (OeINV-CW, OeINV-V), the granule-bound starch synthase I (OeGBSSI) and sucrose synthase (OeSUSY), with a higher expression than at least one single stress (e.g., ≈1-fold higher or more than Xf for OeMST2, OeINV-CW, OeINV-V, OeGBSSI). It is probable that the pathways involved in drought stress response induce positive effects useful for pathogen resistance in cv Leccino, confirming the importance of investigating the mechanisms of cross-talk of biotic and abiotic responses.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 147
Author(s):  
Maria Pobożniak ◽  
Marta Olczyk ◽  
Tomasz Wójtowicz ◽  
Iwona Kamińska ◽  
Ewa Hanus-Fajerska ◽  
...  

Thrips tabaci Lind. is a global pest and also represents a serious threat to onion production in Poland. In 2 years (2015–2016) of field studies, 8 onion cultivars were evaluated to characterize the resistance to onion thrips and to determine if any biochemical and anatomical features of onion plants are associated with antixenotic and/or antibiotic mechanisms of resistance. Additionally, the influence of mechanical injury on the content of several biochemical compounds in onion leaves was made. The resistance to thrips colonization during the migration period, abundance, and thrips damage throughout the whole vegetation season was determined. We identified two cultivars, Tęcza and Wenta, resistant to thrips colonization and abundance, and one cultivar Wenta resistant to thrips damage. A positive correlation between concentrations of the reducing sugars and thrips abundance and conversely negative relationships between the total phenolic content and thrips damage was confirmed in both years. We suspect that a thinner epidermal layer, a smaller area of epidermal and mesophilic cells, and a lower diameter of vascular bundles may favor the resistance of onion cultivars to thrips. Thrips foraging resulted in a decrease in the content of soluble sugars, sucrose, and plant pigments in the leaves of all onion varieties.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Zixuan Yu ◽  
Xiaofeng Zhang ◽  
Rong Zhang ◽  
Yan Yu ◽  
Fengbo Sun

Bamboo is much more easily attacked by fungus compared with wood, resulting in shorter service life and higher loss in storage and transportation. It has been long accepted that the high content of starch and sugars in bamboo is mainly responsible for its low mould resistance. In this paper, acetic acid, propionic acid, oxalic acid, citric acid, and hydrochloric acid were adopted to hydrothermally hydrolyze the starch in bamboo, with the aims to investigate their respective effect on the mould and blue-stain resistance of bamboo, and the optimized citric acid in different concentrations were studied. The starch content, glucose yields, weight loss, and colour changes of solid bamboo caused by the different acidic hydrolysis were also compared. The results indicated that weak acidic hydrolysis treatment was capable of improving mould-resistant of bamboo. The mould resistance increased with the increased concentration of citric acid. Bamboo treated with citric acid in the concentration of 10% could reduce the infected area ranging to 10–17%, the growth rating of which could reach 1 resistance. The content of soluble sugar and starch remained in bamboo decreased significantly from 43 mg/g to 31 mg/g and 46 mg/g to 23 mg/g, respectively, when the citric acid concentration varied from 4% to 10%. Citric acid treatments of 10% also caused a greatest surface colour change and weight loss. The results in this study demonstrated citric acid treatment can effectively reduce the starch grain and soluble sugars content and improve mould resistance of bamboo, which can be attributed to the reduction of starch grain and soluble carbohydrates (such as glucose, fructose, and sucrose, etc.) in bamboo.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262304
Author(s):  
Alaa Emara Rabee ◽  
Amr A. Sayed Alahl ◽  
Mebarek Lamara ◽  
Suzanne L. Ishaq

Lignocellulosic biomass such as barley straw is a renewable and sustainable alternative to traditional feeds and could be used as bioenergy sources; however, low hydrolysis rate reduces the fermentation efficiency. Understanding the degradation and colonization of barley straw by rumen bacteria is the key step to improve the utilization of barley straw in animal feeding or biofuel production. This study evaluated the hydrolysis of barley straw as a result of the inoculation by rumen fluid of camel and sheep. Ground barley straw was incubated anaerobically with rumen inocula from three fistulated camels (FC) and three fistulated sheep (FR) for a period of 72 h. The source of rumen inoculum did not affect the disappearance of dry matter (DMD), neutral detergent fiber (NDFD). Group FR showed higher production of glucose, xylose, and gas; while higher ethanol production was associated with cellulosic hydrolysates obtained from FC group. The diversity and structure of bacterial communities attached to barley straw was investigated by Illumina Mi-Seq sequencing of V4-V5 region of 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes and Bacteroidetes. The dominant genera were RC9_gut_group, Ruminococcus, Saccharofermentans, Butyrivibrio, Succiniclasticum, Selenomonas, and Streptococcus, indicating the important role of these genera in lignocellulose fermentation in the rumen. Group FR showed higher RC9_gut_group and group FC revealed higher Ruminococcus, Saccharofermentans, and Butyrivibrio. Higher enzymes activities (cellulase and xylanase) were associated with group FC. Thus, bacterial communities in camel and sheep have a great potential to improve the utilization lignocellulosic material in animal feeding and the production of biofuel and enzymes.


Author(s):  
Debora Pagliuso ◽  
Adriana Grandis ◽  
Janaina Silva Fortirer ◽  
Plinio Camargo ◽  
Eny Ioshevet Floh ◽  
...  

Duckweeds are the smallest flowering plants on Earth. They grow fast on water's surface and produce large amounts of biomass. Further, duckweeds display high adaptability, and species are found around the globe growing under different environmental conditions. In this work, we report the composition of 21 ecotypes of fourteen species of duckweeds belonging to the two sub-families of the group (Lemnoideae and Wolffioideae). It is reported the presence of starch and the composition of soluble sugars, cell walls, amino acids, phenolics, and tannins. These data were combined with literature data recovered from 85 publications to produce a compiled analysis that affords the examination of duckweeds as possible food sources for human consumption. We compare duckweeds compositions with some of the most common food sources and conclude that duckweed, which is already in use as food in Asia, can be an interesting food source anywhere in the world.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ze Peng ◽  
Yiqin Wang ◽  
Guangdong Geng ◽  
Rui Yang ◽  
Zhifen Yang ◽  
...  

Salt stress results in the severe decline of yield and quality in wheat. In the present study, salt-tolerant Tritipyrum (“Y1805”) and salt-sensitive wheat “Chinese Spring” (“CS”) were selected from 121 wheat germplasms to test their physiological, antioxidant enzyme, and transcriptomic responses and mechanisms against salt stress and recovery. 56 chromosomes were identified in “Y1805” that comprised A, B, and D chromosomes from wheat parent and E chromosomes from Thinopyrum elongatum, adding to salt-tolerant trait. Salt stress had a greater inhibitory effect on roots than on shoots, and “Y1805” demonstrated stronger salt tolerance than “CS.” Compared with “CS,” the activities of superoxide dismutase and catalase in “Y1805” significantly increased under salt stress. “Y1805” could synthesize more proline and soluble sugars than “CS.” Both the net photosynthetic rate and chlorophyll a/b were affected by salt stress, though the level of damage in “Y1805” was significantly less than in “CS.” Transcriptome analysis showed that the differences in the transcriptional regulatory networks of “Y1805” were not only in response to salt stress but also in recovery. The functions of many salt-responsive differentially expressed genes were correlated closely with the pathways “peroxisome,” “arginine and proline metabolism,” “starch and sucrose metabolism,” “chlorophyll and porphyrin metabolism,” and “photosynthesis.”


Sign in / Sign up

Export Citation Format

Share Document