Visualization of subcortical language pathways by diffusion tensor imaging fiber tracking based on rTMS language mapping

2016 ◽  
Vol 11 (3) ◽  
pp. 899-914 ◽  
Author(s):  
Chiara Negwer ◽  
Sebastian Ille ◽  
Theresa Hauck ◽  
Nico Sollmann ◽  
Stefanie Maurer ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Ann-Katrin Ohlerth ◽  
Roelien Bastiaanse ◽  
Chiara Negwer ◽  
Nico Sollmann ◽  
Severin Schramm ◽  
...  

Visualization of functionally significant subcortical white matter fibers is needed in neurosurgical procedures in order to avoid damage to the language network during resection. In an effort to achieve this, positive cortical points revealed during preoperative language mapping with navigated transcranial magnetic stimulation (nTMS) can be employed as regions of interest (ROIs) for diffusion tensor imaging (DTI) fiber tracking. However, the effect that the use of different language tasks has on nTMS mapping and subsequent DTI-fiber tracking remains unexplored. The visualization of ventral stream tracts with an assumed lexico-semantic role may especially benefit from ROIs delivered by the lexico-semantically demanding verb task, Action Naming. In a first step, bihemispheric nTMS language mapping was administered in 18 healthy participants using the standard task Object Naming and the novel task Action Naming to trigger verbs in a small sentence context. Cortical areas in which nTMS induced language errors were identified as language-positive cortical sites. In a second step, nTMS-based DTI-fiber tracking was conducted using solely these language-positive points as ROIs. The ability of the two tasks’ ROIs to visualize the dorsal tracts Arcuate Fascicle and Superior Longitudinal Fascicle, the ventral tracts Inferior Longitudinal Fascicle, Uncinate Fascicle, and Inferior Fronto-Occipital Fascicle, the speech-articulatory Cortico-Nuclear Tract, and interhemispheric commissural fibers was compared in both hemispheres. In the left hemisphere, ROIs of Action Naming led to a significantly higher fraction of overall visualized tracts, specifically in the ventral stream’s Inferior Fronto-Occipital and Inferior Longitudinal Fascicle. No difference was found between tracking with Action Naming vs. Object Naming seeds for dorsal stream tracts, neither for the speech-articulatory tract nor the inter-hemispheric connections. While the two tasks appeared equally demanding for phonological-articulatory processes, ROI seeding through the task Action Naming seemed to better visualize lexico-semantic tracts in the ventral stream. This distinction was not evident in the right hemisphere. However, the distribution of tracts exposed was, overall, mirrored relative to those in the left hemisphere network. In presurgical practice, mapping and tracking of language pathways may profit from these findings and should consider inclusion of the Action Naming task, particularly for lesions in ventral subcortical regions.


2021 ◽  
pp. 1-12
Author(s):  
Luca L. Silva ◽  
Mehmet S. Tuncer ◽  
Peter Vajkoczy ◽  
Thomas Picht ◽  
Tizian Rosenstock

OBJECTIVE Visualization of subcortical language pathways by means of diffusion tensor imaging–fiber tracking (DTI-FT) is evolving as an important tool for surgical planning and decision making in patients with language-suspect brain tumors. Repetitive navigated transcranial magnetic stimulation (rTMS) cortical language mapping noninvasively provides additional functional information. Efforts to incorporate rTMS data into DTI-FT are promising, but the lack of established protocols makes it hard to assess clinical utility. The authors performed DTI-FT of important language pathways by using five distinct approaches in an effort to evaluate the respective clinical usefulness of each approach. METHODS Thirty patients with left-hemispheric perisylvian lesions underwent preoperative rTMS language mapping and DTI. FT of the principal language tracts was conducted according to different strategies: Ia, anatomical landmark based; Ib, lesion-focused landmark based; IIa, rTMS based; IIb, rTMS based with postprocessing; and III, rTMS enhanced (based on a combination of structural and functional data). The authors analyzed the respective success of each method in revealing streamlines and conducted a multinational survey with expert clinicians to evaluate aspects of clinical utility. RESULTS The authors observed high usefulness and accuracy ratings for anatomy-based approaches (Ia and Ib). Postprocessing of rTMS-based tractograms (IIb) led to more balanced perceived information content but did not improve the usefulness for surgical planning and risk assessment. Landmark-based tractography (Ia and Ib) was most successful in delineating major language tracts (98% success), whereas rTMS-based tractography (IIa and IIb) frequently failed to reveal streamlines and provided less complete tractograms than the landmark-based approach (p < 0.001). The lesion-focused landmark-based (Ib) and the rTMS-enhanced (III) approaches were the most preferred methods. CONCLUSIONS The lesion-focused landmark-based approach (Ib) achieved the best ratings and enabled visualization of the principal language tracts in almost all cases. The rTMS-enhanced approach (III) was positively evaluated by the experts because it can reveal cortico-subcortical connections, but the functional relevance of these connections is still unclear. The use of regions of interest derived solely from cortical rTMS mapping (IIa and IIb) leads to cluttered images that are of limited use in clinical practice.


2017 ◽  
Vol 126 (1) ◽  
pp. 222-233 ◽  
Author(s):  
Nico Sollmann ◽  
Chiara Negwer ◽  
Lorena Tussis ◽  
Theresa Hauck ◽  
Sebastian Ille ◽  
...  

OBJECTIVE Resection of brain tumors in language-eloquent areas entails the risk of postoperative aphasia. It has been demonstrated via navigated transcranial magnetic stimulation (nTMS) that language function can partially shift to the unaffected hemisphere due to tumor-induced plasticity. Therefore, this study was designed to evaluate whether interhemispheric connectivity (IC) detected by nTMS-based diffusion tensor imaging–fiber tracking (DTI-FT) can be used to predict surgery-related aphasia in patients with brain tumors. METHODS Thirty-eight patients with left-sided perisylvian brain lesions underwent cortical language mapping of both hemispheres by nTMS prior to awake surgery. Then, nTMS-based DTI-FT was conducted with a fractional anisotropy (FA) of 0.01 and 0.2 to visualize nTMS-based IC. Receiver operating characteristics were calculated for the prediction of a postoperative (irrespective of the preoperative state) and a new surgery-related aphasia by the presence of detectable IC. RESULTS Language mapping by nTMS was possible in all patients. Seventeen patients (44.7%) suffered from surgery-related worsening of language performance (transient aphasia according to 3-month follow-up in 16 subjects [42.1%]; new permanent aphasia according to 3-month follow-up in 1 patient [2.6%]). Regarding the correlation of aphasia to nTMS-based IC, statistically significant differences were revealed for both evaluated FA values. However, better results were observed for tractography with an FA of 0.2, which led to a specificity of 93% (postoperative aphasia) and 90% (surgery-related aphasia). For postoperative aphasia, the corresponding OR was 0.1282 (95% CI 0.0143–1.1520), and for surgery-related aphasia the OR was 0.1184 (95% CI 0.0208–0.6754). CONCLUSIONS According to these results, IC detected by preoperative nTMS-based DTI-FT might be regarded as a risk factor for surgery-related aphasia, with a specificity of up to 93%. However, because the majority of enrolled patients suffered from transient aphasia postoperatively, it has to be evaluated whether this approach distinctly leads to similar results among patients with permanent language deficits. Despite this restriction, this approach might contribute to individualized patient consultation prior to tumor resection in clinical practice.


2020 ◽  
Vol 26 (5) ◽  
pp. 583-593
Author(s):  
Tizian Rosenstock ◽  
Thomas Picht ◽  
Heike Schneider ◽  
Peter Vajkoczy ◽  
Ulrich-Wilhelm Thomale

OBJECTIVEIn adults, navigated transcranial magnetic stimulation (nTMS) has been established as a preoperative examination method for brain tumors in motor- and language-eloquent locations. However, the clinical relevance of nTMS in children with brain tumors is still unclear. Here, the authors present their initial experience with nTMS-based surgical planning and family counseling in pediatric cases.METHODSThe authors analyzed the feasibility of nTMS and its influence on counseling and surgical strategy in a prospective study conducted between July 2017 and September 2019. The main inclusion criterion was a potential benefit from functional mapping data derived from nTMS and/or nTMS-enhanced tractography in pediatric patients who presented to the authors’ department prior to surgery for lesions close to motor- and/or speech-eloquent areas. The study was undertaken in 14 patients (median age 7 years, 8 males) who presented with different brain lesions.RESULTSMotor mapping combined with cortical seed area definition could be performed in 10 children (71%) to identify the corticospinal tract by additional diffusion tensor imaging (DTI). All motor mappings could be performed successfully without inducing relevant side effects. In 7 children, nTMS language mapping was performed to detect language-relevant cortical areas and DTI fiber tractography was performed to visualize the individual language network. nTMS examination was not possible in 4 children because of lack of compliance (n = 2), syncope (n = 1), and preexisting implant (n = 1). After successful mapping, the spatial relation between lesion and functional tissue was used for surgical planning in all 10 patients, and 9 children underwent nTMS-DTI integrated neuronavigation. No surgical complications or unexpected neurological deterioration was observed. In all successful nTMS cases, better function-based counseling was offered to the families. In 6 of 10 patients the surgical strategy was adapted according to nTMS data, and in 6 of 10 cases the extent of resection (EOR) was redefined.CONCLUSIONSnTMS and DTI fiber tracking were feasible for the majority of children. Presurgical counseling as well as surgical planning for the approach and EOR were improved by the nTMS examination results. nTMS in combination with DTI fiber tracking can be regarded as beneficial for neurosurgical procedures in eloquent areas in the pediatric population.


NeuroImage ◽  
2004 ◽  
Vol 21 (2) ◽  
pp. 616-622 ◽  
Author(s):  
Roland G Henry ◽  
Jeffrey I Berman ◽  
Srikantan S Nagarajan ◽  
Pratik Mukherjee ◽  
Mitchel S Berger

2017 ◽  
Vol 126 (3) ◽  
pp. 1006-1014 ◽  
Author(s):  
Chiara Negwer ◽  
Nico Sollmann ◽  
Sebastian Ille ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
...  

OBJECTIVE Diffusion tensor imaging (DTI) fiber tracking (FT) has been widely used in glioma surgery in recent years. It can provide helpful information about subcortical structures, especially in patients with eloquent space-occupying lesions. This study compared the newly developed navigated transcranial magnetic stimulation (nTMS)-based DTI FT of language pathways with the most reproducible protocol for language pathway tractography, using cubic regions of interest (ROIs) for the arcuate fascicle. METHODS Thirty-seven patients with left-sided perisylvian lesions underwent language mapping by repetitive nTMS. DTI FT was performed using the cubic ROIs–based protocol and the authors' nTMS-based DTI FT approach. The same minimal fiber length and fractional anisotropy were chosen (50 mm and 0.2, respectively). Both protocols were performed with standard clinical tractography software. RESULTS Both methods visualized language-related fiber tracts (i.e., corticonuclear tract, arcuate fascicle, uncinate fascicle, superior longitudinal fascicle, inferior longitudinal fascicle, arcuate fibers, commissural fibers, corticothalamic fibers, and frontooccipital fascicle) in all 37 patients. Using the cubic ROIs-based protocol, 39.9% of these language-related fiber tracts were detected in the examined patients, as opposed to 76.0% when performing nTMS-based DTI FT. For specifically tracking the arcuate fascicle, however, the cubic ROIs-based approach showed better results (97.3% vs 75.7% with nTMS-based DTI FT). CONCLUSIONS The cubic ROIs-based protocol was designed for arcuate fascicle tractography, and this study shows that it is still useful for this intention. However, superior results were obtained using the nTMS-based DTI FT for visualization of other language-related fiber tracts.


NeuroImage ◽  
2010 ◽  
Vol 49 (2) ◽  
pp. 1572-1580 ◽  
Author(s):  
Laura E. Danielian ◽  
Nobue K. Iwata ◽  
David M. Thomasson ◽  
Mary Kay Floeter

Sign in / Sign up

Export Citation Format

Share Document