Effects of lung protective ventilation on postoperative respiratory parameters in patients undergoing robot-assisted radical prostatectomy

2019 ◽  
Vol 14 (3) ◽  
pp. 509-516
Author(s):  
Mette Mølsted ◽  
Peter Ekeløf ◽  
Jesper Nørgaard Bech ◽  
Jost Wessels ◽  
Jørgen Bjerggaard Jensen
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sidse Høyer ◽  
Frank H. Mose ◽  
Peter Ekeløf ◽  
Jørgen B. Jensen ◽  
Jesper N. Bech

Abstract Background Lung protective ventilation with low tidal volume (TV) and increased positive end-expiratory pressure (PEEP) can have unfavorable effects on the cardiovascular system. We aimed to investigate whether lung protective ventilation has adverse impact on hemodynamic, renal and hormonal variables. Methods In this randomized, single-blinded, placebo-controlled study, 24 patients scheduled for robot-assisted radical prostatectomy were included. Patients were equally randomized to receive either ventilation with a TV of 6 ml/IBW and PEEP of 10 cm H2O (LTV-h.PEEP) or ventilation with a TV of 10 ml/IBW and PEEP of 4 cm H2O (HTV-l.PEEP). Before, during and after surgery, hemodynamic variables were measured, and blood and urine samples were collected. Blood samples were analyzed for plasma concentrations of electrolytes and vasoactive hormones. Urine samples were analyzed for excretions of electrolytes and markers of nephrotoxicity. Results Comparable variables were found among the two groups, except for significantly higher postoperative levels of plasma brain natriuretic peptide (p = 0.033), albumin excretion (p = 0.012) and excretion of epithelial sodium channel (p = 0.045) in the LTV-h.PEEP ventilation group compared to the HTV-l.PEEP ventilation group. In the combined cohort, we found a significant decrease in creatinine clearance (112.0 [83.4;126.7] ml/min at baseline vs. 45.1 [25.4;84.3] ml/min during surgery) and a significant increase in plasma concentrations of renin, angiotensin II, and aldosterone. Conclusion Lung protective ventilation was associated with minor adverse hemodynamic and renal effects postoperatively. All patients showed a substantial but transient reduction in renal function accompanied by activation of the renin-angiotensin-aldosterone system. Trial registration ClinicalTrials, NCT02551341. Registered 13 September 2015.


2019 ◽  
Author(s):  
Joo-Hyun Jun ◽  
Rack Kyung Chung ◽  
Hee Jung Baik ◽  
Mi Hwa Chung ◽  
Joon-Sang Hyeon ◽  
...  

Abstract Background: The reliability of pulse pressure variation (PPV) and stroke volume variation (SVV) is controversial under pneumoperitoneum. In addition, the usefulness of these indices is being called into question with the increasing adoption of lung-protective ventilation using low tidal volume (VT) in surgical patients. A recent study indicated that changes in PPV or SVV obtained by transiently increasing VT (VT challenge) accurately predicted fluid responsiveness even in critically ill patients receiving low VT. We evaluated whether the changes in PPV and SVV induced by a VT challenge predicted fluid responsiveness during pneumoperitoneum. Methods: We performed an interventional prospective study in patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position under lung-protective ventilation. PPV, SVV, and the stroke volume index (SVI) were measured at a VT of 6 mL/kg and 3 minutes after increasing the VT to 8 mL/kg. The VT was reduced to 6 mL/kg, and measurements were performed before and 5 minutes after volume expansion (infusing 6% hydroxyethyl starch 6 ml/kg over 10 minutes). Fluid responsiveness was defined as ≥ 15% increase in the SVI. Results: Twenty-four of the 38 patients enrolled in the study were responders. In the receiver operating characteristic curve analysis, an increase in PPV > 1% after the VT challenge showed excellent predictive capability for fluid responsiveness, with an area under the curve (AUC) of 0.95 [95% confidence interval (CI), 0.83–0.99, P < 0.0001; sensitivity 92%, specificity 86%]. An increase in SVV > 2% after the VT challenge predicted fluid responsiveness, but showed only fair predictive capability, with an AUC of 0.76 (95% CI, 0.60–0.89, P < 0.0006; sensitivity 46%, specificity 100%). The augmented values of PPV and SVV following VT challenge also showed the improved predictability of fluid responsiveness compared to PPV and SVV values (as measured by VT) of 6 ml/kg. Conclusions: The change in PPV following the VT challenge has excellent reliability in predicting fluid responsiveness in our surgical population. The change in SVV and augmented values of PPV and SVV following this test are also reliable.


2019 ◽  
Author(s):  
Joo-Hyun Jun ◽  
Rack Kyung Chung ◽  
Hee Jung Baik ◽  
Mi Hwa Chung ◽  
Joon-Sang Hyeon ◽  
...  

Abstract Background: Pulse pressure variation (PPV) and stroke volume variation (SVV) induced by mechanical ventilation are widely used as predictors of fluid responsiveness. However, the reliability of these dynamic preload indices is controversial under pneumoperitoneum. In addition, the usefulness of these indices is being called into question with the increasing adoption of lung-protective ventilation using low tidal volume (VT) in surgical patients. We investigated whether increasing tidal volume (VT) from 6 to 8 ml/kg can improve the predictive power of PPV and SVV during pneurmoperitoneum. Methods: We performed a prospective observational study in patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position under lung-protective ventilation. PPV, SVV, and the stroke volume index (SVI) were measured at a VT of 6 mL/kg and 3 minutes after increasing the VT to 8 mL/kg. The VT was reduced to 6 mL/kg, and measurements were performed before and 5 minutes after volume expansion (infusing 6% hydroxyethyl starch 6 ml/kg over 10 minutes). Fluid responsiveness was defined as ≥ 15% increase in the SVI. Results: Twenty-four of the 38 patients enrolled in the study were responders. In the receiver operating characteristic curve analysis, the augmented PPV and SVV associated with a temporary increase in VT from 6 to 8 ml/kg improved the predictability of fluid responsiveness, with area under the curve (AUC) values of 0.85 (95% confidence interval (CI), 0.70–0.95, P < 0.0001) and 0.77 (95% CI 0.61–0.89, P = 0.0003), compared to PPV and SVV values (as measured by VT) of 6 ml/kg. The absolute change in PPV and SVV values obtained by transiently increasing VT also predicted fluid responsiveness, with AUC values of 0.95 (95% CI 0.83–0.99, P < 0.0001) and 0.76 (95% CI 0.60–0.89, P = 0.0006). Conclusions: Augmented PPV and SVV values, and absolute changes therein obtained by increasing VT from 6 to 8 ml/kg, predicted fluid responsiveness with high sensitivity and specificity in our surgical population.


2012 ◽  
Vol 187 (4S) ◽  
Author(s):  
Yoshifumi Kadono ◽  
Hiroshi Yaegashi ◽  
Kazuaki Machioka ◽  
Satoru Ueno ◽  
Sotaro Miwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document