scholarly journals The tidal volume challenge improves the reliability of dynamic preload indices during robot-assisted laparoscopic surgery in the Trendelenburg position with lung-protective ventilation

2019 ◽  
Author(s):  
Joo-Hyun Jun ◽  
Rack Kyung Chung ◽  
Hee Jung Baik ◽  
Mi Hwa Chung ◽  
Joon-Sang Hyeon ◽  
...  

Abstract Background: The reliability of pulse pressure variation (PPV) and stroke volume variation (SVV) is controversial under pneumoperitoneum. In addition, the usefulness of these indices is being called into question with the increasing adoption of lung-protective ventilation using low tidal volume (VT) in surgical patients. A recent study indicated that changes in PPV or SVV obtained by transiently increasing VT (VT challenge) accurately predicted fluid responsiveness even in critically ill patients receiving low VT. We evaluated whether the changes in PPV and SVV induced by a VT challenge predicted fluid responsiveness during pneumoperitoneum. Methods: We performed an interventional prospective study in patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position under lung-protective ventilation. PPV, SVV, and the stroke volume index (SVI) were measured at a VT of 6 mL/kg and 3 minutes after increasing the VT to 8 mL/kg. The VT was reduced to 6 mL/kg, and measurements were performed before and 5 minutes after volume expansion (infusing 6% hydroxyethyl starch 6 ml/kg over 10 minutes). Fluid responsiveness was defined as ≥ 15% increase in the SVI. Results: Twenty-four of the 38 patients enrolled in the study were responders. In the receiver operating characteristic curve analysis, an increase in PPV > 1% after the VT challenge showed excellent predictive capability for fluid responsiveness, with an area under the curve (AUC) of 0.95 [95% confidence interval (CI), 0.83–0.99, P < 0.0001; sensitivity 92%, specificity 86%]. An increase in SVV > 2% after the VT challenge predicted fluid responsiveness, but showed only fair predictive capability, with an AUC of 0.76 (95% CI, 0.60–0.89, P < 0.0006; sensitivity 46%, specificity 100%). The augmented values of PPV and SVV following VT challenge also showed the improved predictability of fluid responsiveness compared to PPV and SVV values (as measured by VT) of 6 ml/kg. Conclusions: The change in PPV following the VT challenge has excellent reliability in predicting fluid responsiveness in our surgical population. The change in SVV and augmented values of PPV and SVV following this test are also reliable.

2019 ◽  
Author(s):  
Joo-Hyun Jun ◽  
Rack Kyung Chung ◽  
Hee Jung Baik ◽  
Mi Hwa Chung ◽  
Joon-Sang Hyeon ◽  
...  

Abstract Background: Pulse pressure variation (PPV) and stroke volume variation (SVV) induced by mechanical ventilation are widely used as predictors of fluid responsiveness. However, the reliability of these dynamic preload indices is controversial under pneumoperitoneum. In addition, the usefulness of these indices is being called into question with the increasing adoption of lung-protective ventilation using low tidal volume (VT) in surgical patients. We investigated whether increasing tidal volume (VT) from 6 to 8 ml/kg can improve the predictive power of PPV and SVV during pneurmoperitoneum. Methods: We performed a prospective observational study in patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position under lung-protective ventilation. PPV, SVV, and the stroke volume index (SVI) were measured at a VT of 6 mL/kg and 3 minutes after increasing the VT to 8 mL/kg. The VT was reduced to 6 mL/kg, and measurements were performed before and 5 minutes after volume expansion (infusing 6% hydroxyethyl starch 6 ml/kg over 10 minutes). Fluid responsiveness was defined as ≥ 15% increase in the SVI. Results: Twenty-four of the 38 patients enrolled in the study were responders. In the receiver operating characteristic curve analysis, the augmented PPV and SVV associated with a temporary increase in VT from 6 to 8 ml/kg improved the predictability of fluid responsiveness, with area under the curve (AUC) values of 0.85 (95% confidence interval (CI), 0.70–0.95, P < 0.0001) and 0.77 (95% CI 0.61–0.89, P = 0.0003), compared to PPV and SVV values (as measured by VT) of 6 ml/kg. The absolute change in PPV and SVV values obtained by transiently increasing VT also predicted fluid responsiveness, with AUC values of 0.95 (95% CI 0.83–0.99, P < 0.0001) and 0.76 (95% CI 0.60–0.89, P = 0.0006). Conclusions: Augmented PPV and SVV values, and absolute changes therein obtained by increasing VT from 6 to 8 ml/kg, predicted fluid responsiveness with high sensitivity and specificity in our surgical population.


2019 ◽  
Author(s):  
Pimsai Kunakorn ◽  
Sunthiti Morakul ◽  
Tananchai Petnak ◽  
Pongsasit Singhatat ◽  
Chawika Pisitsak

Abstract Background: Lung protective ventilation with low tidal volume is beneficial in patients with intermediate to high risk of postoperative pulmonary complications. However, during low tidal volume ventilation, pulse pressure variation (PPV) and stroke volume variation (SVV) do not predict fluid responsiveness. We aimed to determine whether changes in PPV and SVV after transient increases in tidal volume can predict fluid responsiveness in these patients. Methods: We recorded 22 measurements from 15 patients who experienced postoperative acute circulatory failure. We performed a tidal volume challenge by transiently increasing tidal volume (VT) from 6 to 8 mL/kg (VT6–8), 8 to 10 mL/kg (VT8–10), and 6 to 10 mL/kg (VT6–10) of patients' predicted body weight. The change in PPV (∆PPV) at VT6–8 (∆PPV6–8), VT8–10 (∆PPV8–10), VT6–10 (∆PPV6–10) and the change in SVV (∆SVV) at VT6–8 (∆SVV6–8), VT8–10 (∆SVV8–10), and VT6–10 (∆SVV6–10) were recorded. Patients were classified as fluid responders if there was an increase in stroke volume of more than 10% after a fluid bolus. Results: Following the tidal volume challenge, ∆PPV and ∆SVV failed to predict fluid responsiveness, with areas under the receiver operating characteristic curves (with 95% confidence intervals) of 0.49 (0.23–0.74), 0.54 (0.29–0.79), 0.52 (0.28–0.77) for ∆PPV6–8, ∆PPV8–10, and ∆PPV6–10, and 0.55 (0.30–0.80), 0.55 (0.31–0.80), and 0.59 (0.34–0.84) for ∆SVV6–8, ∆SVV8–10, and ∆SVV6–10, respectively. Conclusions: Changes in PPV and SVV after the tidal volume challenge did not predict fluid responsiveness in postoperative patients with low tidal volume ventilation. Trial registration: This trial was registered with Clinicaltrials.in.th, TCTR20190808003.


2020 ◽  
Vol 103 (8) ◽  
pp. 729-735

Background: Lung protective ventilation with low tidal volume (VT) is beneficial in patients with intermediate to high risk of post-operative pulmonary complications. However, during low VT ventilation, pulse pressure variation (PPV) and stroke volume variation (SVV) do not predict fluid responsiveness. Objective: To determine whether changes in PPV and SVV after transient increases in VT could predict fluid responsiveness. Materials and Methods: The authors recorded 20 measurements from 15 patients experiencing post-operative acute circulatory failure. The authors performed a VT challenge by transient increasing VT from 6 to 8 mL/kg (VT₆-₈), 8 to 10 mL/kg (VT₈-₁₀), and 6 to 10 mL/kg (VT₆-₁₀) of patients’ predicted body weight. The change in PPV (∆PPV) at VT₆-₈ (∆PPV₆-₈), VT₈-₁₀ (∆PPV₈-₁₀), VT₆-₁₀ (∆PPV₆-₁₀), and the change in SVV (∆SVV) at VT₆-₈ (∆SVV₆-₈), VT₈-₁₀ (∆SVV₈-₁₀), and VT₆-₁₀ (∆SVV₆-₁₀) were recorded. Patients were classified as fluid responders if there was an increase in stroke volume of more than 10% after a fluid bolus. Results: Following the VT challenge, ∆PPV and ∆SVV failed to predict fluid responsiveness, with areas under the receiver operating characteristic curves (with 95% confidence intervals) of 0.49 (0.23 to 0.74), 0.54 (0.29 to 0.79), 0.52 (0.28 to 0.77) for ∆PPV₆-₈, ∆PPV₈-₁₀, and ∆PPV₆-₁₀, and 0.55 (0.30 to 0.80), 0.55 (0.31 to 0.80), and 0.59 (0.34 to 0.84) for ∆SVV₆-₈, ∆SVV₈-₁₀, and ∆SVV₆-₁₀, respectively. Conclusion: Changes in PPV and SVV after the VT challenge did not predict fluid responsiveness in post-operative patients with low VT ventilation. Trial registration: Thai Clinical Trials Registry, TCTR 20190808003 Keywords: Pulse pressure variation, Stroke volume variation, Fluid responsiveness, Tidal volume challenge


Medicina ◽  
2019 ◽  
Vol 56 (1) ◽  
pp. 3
Author(s):  
Eun-Jin Moon ◽  
Seunghwan Lee ◽  
Jae-Woo Yi ◽  
Ju Hyun Kim ◽  
Bong-Jae Lee ◽  
...  

Background and Objectives: For using appropriate goal-directed fluid therapy during the surgical conditions of pneumoperitoneum in the reverse Trendelenburg position, we investigated the predictability of various hemodynamic parameters for fluid responsiveness by using a mini-volume challenge test. Materials and Methods: 42 adult patients scheduled for laparoscopic cholecystectomy were enrolled. After general anesthesia was induced, CO2 pneumoperitoneum was applied and the patient was placed in the reverse Trendelenburg position. The mini-volume challenge test was carried out with crystalloid 4 mL/kg over 10 min. Hemodynamic parameters, including stroke volume variation (SVV), cardiac index (CI), stroke volume index (SVI), mean arterial pressure (MAP), and heart rate (HR), were measured before and after the mini-volume challenge test. The positive fluid responsiveness was defined as an increase in stroke volume index ≥10% after the mini-volume challenge. For statistical analysis, a Shapiro–Wilk test was used to test the normality of the data. Continuous variables were compared using an unpaired t-test or the Mann–Whitney rank-sum test. Categorical data were compared using the chi-square test. A receiver operating characteristic curve analysis was used to assess the predictability of fluid responsiveness after the mini-volume challenge. Results: 31 patients were fluid responders. Compared with the MAP and HR, the SVV, CI, and SVI showed good predictability for fluid responsiveness after the mini-volume challenge test (area under the curve was 0.900, 0.833, and 0.909, respectively; all p-values were <0.0001). Conclusions: SVV and SVI effectively predicted fluid responsiveness after the mini-volume challenge test in patients placed under pneumoperitoneum and in the reverse Trendelenburg position.


2017 ◽  
Vol 127 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Matthieu Biais ◽  
Hugues de Courson ◽  
Romain Lanchon ◽  
Bruno Pereira ◽  
Guillaume Bardonneau ◽  
...  

Abstract Background Mini-fluid challenge of 100 ml colloids is thought to predict the effects of larger amounts of fluid (500 ml) in intensive care units. This study sought to determine whether a low quantity of crystalloid (50 and 100 ml) could predict the effects of 250 ml crystalloid in mechanically ventilated patients in the operating room. Methods A total of 44 mechanically ventilated patients undergoing neurosurgery were included. Volume expansion (250 ml saline 0.9%) was given to maximize cardiac output during surgery. Stroke volume index (monitored using pulse contour analysis) and pulse pressure variations were recorded before and after 50 ml infusion (given for 1 min), after another 50 ml infusion (given for 1 min), and finally after 150 ml infusion (total = 250 ml). Changes in stroke volume index induced by 50, 100, and 250 ml were recorded. Positive fluid challenges were defined as an increase in stroke volume index of 10% or more from baseline after 250 ml. Results A total of 88 fluid challenges were performed (32% of positive fluid challenges). Changes in stroke volume index induced by 100 ml greater than 6% (gray zone between 4 and 7%, including 19% of patients) predicted fluid responsiveness with a sensitivity of 93% (95% CI, 77 to 99%) and a specificity of 85% (95% CI, 73 to 93%). The area under the receiver operating curve of changes in stroke volume index induced by 100 ml was 0.95 (95% CI, 0.90 to 0.99) and was higher than those of changes in stroke volume index induced by 50 ml (0.83 [95% CI, 0.75 to 0.92]; P = 0.01) and pulse pressure variations (0.65 [95% CI, 0.53 to 0.78]; P &lt; 0.005). Conclusions Changes in stroke volume index induced by rapid infusion of 100 ml crystalloid predicted the effects of 250 ml crystalloid in patients ventilated mechanically in the operating room.


Medicine ◽  
2016 ◽  
Vol 95 (28) ◽  
pp. e4259 ◽  
Author(s):  
Bruno De Broca ◽  
Jeremie Garnier ◽  
Marc-Olivier Fischer ◽  
Thomas Archange ◽  
Julien Marc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document