scholarly journals Phytotoxic potential of cultivated and wild potato species (Solanum sp.): role of glycoalkaloids, phenolics and flavonoids in phytotoxicity against mustard (Sinapis alba L.)

2019 ◽  
Vol 41 (5) ◽  
Author(s):  
Dorota Sołtys-Kalina ◽  
Zofia Murawska ◽  
Danuta Strzelczyk-Żyta ◽  
Iwona Wasilewicz-Flis ◽  
Waldemar Marczewski
2011 ◽  
Vol 101 (9) ◽  
pp. 1074-1080 ◽  
Author(s):  
X. K. Cai ◽  
D. M. Spooner ◽  
S. H. Jansky

A major justification for taxonomic research is its assumed ability to predict the presence of traits in a group for which the trait has been observed in a representative subset of the group. Similarly, populations in similar environments are expected to be more alike than populations in divergent environments. Consequently, it is logical to assume that taxonomic relationships and biogeographical data have the power to predict the distribution of disease resistance phenotypes among plant species. The objective of this study was to test predictivity in a group of widely distributed wild potato species, based on hypotheses that closely related organisms (taxonomy) or organisms from similar environments (biogeography) share resistance to a simply inherited trait (Potato virus Y [PVY]). We found that wild potato species with an endosperm balance number (EBN) of 1 (a measure of cross compatibility) shared resistances to PVY more than species with different EBN values. However, a large amount of variation was found for resistance to PVY among and within species. We also found that populations from low elevations were more resistant than those from high elevations. Because PVY is vectored by aphids, we speculate that the distribution of aphids may determine the level of selection pressure for PVY resistance.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 732
Author(s):  
Fergus Meade ◽  
Ronald Hutten ◽  
Silke Wagener ◽  
Vanessa Prigge ◽  
Emmet Dalton ◽  
...  

Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21–47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.


2019 ◽  
Vol 99 (6) ◽  
pp. 873-884 ◽  
Author(s):  
Qiaoyu Wu ◽  
Tianjiu He ◽  
Hui Liu ◽  
Xiaobo Luo ◽  
Wang Yin ◽  
...  

Potato cultivars are sensitive to frost; thus, freezing damage often results in heavy loss of potato yield. In this study, two wild potato species, Solanum acaule W3, which is frost-resistant and has cold-acclimation ability, and Solanum cardiophyllum Cph12, which is frost-sensitive and cannot be cold-acclimated, were used to research the cell structure and physiological changes that occur during cold acclimation. The results showed that the frost resistance of W3 was enhanced by cold acclimation, while the frost resistance of Cph12 did not change. The subcellular characteristics related to the enhancement of freezing resistance mainly include a decrease in the proportion of the vacuole to total cell volume, integrity of the biomembrane, and orderly arrangement of grana lamellae. At the physiological level, the W3 damage index was correlated with membrane lipid peroxidation system indices (including chlorophyll, malondialdehyde, and the difference between relative conductivity before and after freezing treatment in W3), the activity of the antioxidant enzymes superoxide dismutase and catalase, the contents of the osmotic regulators proline and soluble protein, and the contents of the endogenous hormones salicylic acid (SA), indole acetic acid/abscisic acid (IAA/ABA), and SA/ABA, which indicated that cold acclimation enhanced the freezing resistance of wild potato species W3 by enhancing its original cold-tolerance characteristics. The results could be useful to clarify the cold resistance mechanism of plants, and to provide a theoretical basis for cold-resistance breeding.


2013 ◽  
Vol 137 (10) ◽  
pp. 739-750 ◽  
Author(s):  
F. G. Horgan ◽  
D. T. Quiring ◽  
A. Lagnaoui ◽  
Y. Pelletier

2015 ◽  
Vol 33 (5) ◽  
pp. 1584-1598 ◽  
Author(s):  
Jagesh Kumar Tiwari ◽  
Sapna Devi ◽  
Sanjeev Sharma ◽  
Poonam Chandel ◽  
Shashi Rawat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document