Clustering gene expression data using a novel model of self-organizing map

2007 ◽  
Vol 11 (2) ◽  
pp. 163-166 ◽  
Author(s):  
Wei Hao ◽  
Song-nian Yu ◽  
Fu-li Xi
2009 ◽  
Vol 07 (04) ◽  
pp. 645-661 ◽  
Author(s):  
XIN CHEN

There is an increasing interest in clustering time course gene expression data to investigate a wide range of biological processes. However, developing a clustering algorithm ideal for time course gene express data is still challenging. As timing is an important factor in defining true clusters, a clustering algorithm shall explore expression correlations between time points in order to achieve a high clustering accuracy. Moreover, inter-cluster gene relationships are often desired in order to facilitate the computational inference of biological pathways and regulatory networks. In this paper, a new clustering algorithm called CurveSOM is developed to offer both features above. It first presents each gene by a cubic smoothing spline fitted to the time course expression profile, and then groups genes into clusters by applying a self-organizing map-based clustering on the resulting splines. CurveSOM has been tested on three well-studied yeast cell cycle datasets, and compared with four popular programs including Cluster 3.0, GENECLUSTER, MCLUST, and SSClust. The results show that CurveSOM is a very promising tool for the exploratory analysis of time course expression data, as it is not only able to group genes into clusters with high accuracy but also able to find true time-shifted correlations of expression patterns across clusters.


2003 ◽  
Vol 14 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Habtom Ressom ◽  
Dali Wang ◽  
Padma Natarajan

This paper presents a novel clustering technique known as adaptive double self-organizing map (ADSOM). ADSOM has a flexible topology and performs clustering and cluster visualization simultaneously, thereby requiring no a priori knowledge about the number of clusters. ADSOM is developed based on a recently introduced technique known as double self-organizing map (DSOM). DSOM combines features of the popular self-organizing map (SOM) with two-dimensional position vectors, which serve as a visualization tool to decide how many clusters are needed. Although DSOM addresses the problem of identifying unknown number of clusters, its free parameters are difficult to control to guarantee correct results and convergence. ADSOM updates its free parameters during training, and it allows convergence of its position vectors to a fairly consistent number of clusters provided that its initial number of nodes is greater than the expected number of clusters. The number of clusters can be identified by visually counting the clusters formed by the position vectors after training. A novel index is introduced based on hierarchical clustering of the final locations of position vectors. The index allows automated detection of the number of clusters, thereby reducing human error that could be incurred from counting clusters visually. The reliance of ADSOM in identifying the number of clusters is proven by applying it to publicly available gene expression data from multiple biological systems such as yeast, human, and mouse. ADSOM’s performance in detecting number of clusters is compared with a model-based clustering method.


2002 ◽  
Vol 15 (8-9) ◽  
pp. 953-966 ◽  
Author(s):  
Janne Nikkilä ◽  
Petri Törönen ◽  
Samuel Kaski ◽  
Jarkko Venna ◽  
Eero Castrén ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document