Unsteady flow structure of an airfoil in ground effect

2010 ◽  
Vol 14 (3) ◽  
pp. 228-234
Author(s):  
Jian-lin Qian ◽  
chin Dai
2021 ◽  
Vol 2119 (1) ◽  
pp. 012165
Author(s):  
V S Berdnikov ◽  
V A Vinokurov ◽  
V V Vinokurov

Abstract The evolution of the flow structure and heat transfer with an increase in the characteristic temperature drop in the ranges of Grashof and Marangoni numbers 3558 ≤ Gr ≤ 7116 and 2970 ≤ Ma ≤ 5939 are investigated numerically. The boundary of the transition to unsteady flow and heat transfer regimes has been determined.


Author(s):  
Chunill Hah ◽  
Michael Hathaway ◽  
Joseph Katz

The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.


2019 ◽  
Author(s):  
Tomohiro Watanabe ◽  
Nicolas H. Jourdaine ◽  
Nobuyuki Tsuboi ◽  
Takayuki Kojima ◽  
Koichi A. Hayashi

2006 ◽  
Vol 128 (5) ◽  
pp. 937-946 ◽  
Author(s):  
José González ◽  
Carlos Santolaria

A relationship between the global variables and the dynamic flow structure numerically obtained for a low specific speed centrifugal pump is presented in this paper. A previously developed unsteady flow model is used to correlate the dynamic field with the flow characteristics inside the impeller and volute of a single-stage commercial pump. Actually, the viscous incompressible Navier-Stokes equations are solved within a 3D unsteady flow model. A sliding mesh technique is applied to take into account the impeller-volute interaction. After the numerical model has been successfully compared with the experimental data for the unsteady pressure fluctuations pattern in the volute shroud, a new step is proposed in order to correlate the observed effects with the flow structure inside the pump. In particular, the torque as a function of the relative position of the impeller blades is related to the blades loading, and the secondary flow in the volute is related to the different pressure patterns numerically obtained. Local flow analysis and qualitative study of the helicity in different volute sections is performed. The main goal of the study presented is the successful correlation of local and global parameters for the flow in a centrifugal pump. The pressure forces seem to be the main driven mechanism to establish the flow features both in the impeller and volute, for a wide range of operating conditions.


2005 ◽  
Vol 34 (6) ◽  
pp. 407-418 ◽  
Author(s):  
Noriyuki Furuichi ◽  
Masashige Yoshida ◽  
Masaya Kumada

Sign in / Sign up

Export Citation Format

Share Document