clearance flow
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 42)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 164 ◽  
pp. 108583
Author(s):  
Rui Xu ◽  
Yu Song ◽  
Xiyao Gu ◽  
Bin Lin ◽  
Dezhong Wang
Keyword(s):  

2021 ◽  
Vol 11 (22) ◽  
pp. 11000
Author(s):  
Zhizhou Zhao ◽  
Wenwu Song ◽  
Yongxin Jin ◽  
Jiaxing Lu

In this paper, to study the effect of dynamic and static interference of clearance flow in fluid machinery caused by changes in rotational speed, the model was simplified to a rotor-stator system cavity flow. Investigating the flow characteristics in the cavity by changing the rotor speed of the rotor-stator system is of considerable significance. ANSYS-CFX was applied to numerically simulate the test model and the results were compared with the experimental results of the windage torque of the rotor-stator system. The inlet flow rate and geometric model remained unchanged. With an increase in the rotating Reynolds number, the shear stress on the rotor wall gradually increased, and the maximum gradient was within l* < 0.15. In addition to the shear stress, the tangential Reynolds stress Rrθ contributed partly to the torque on the rotor wall. The swirling vortex formed by entrainment in the cavity of the rotor-stator system tended to separate at ReΦ= 3.53 × 106. As the rotating Reynolds number continued to increase, the secondary vortex finally separated completely. The strength of the vortex in the rotor turbulent boundary layer decreased with an increase in the rotating speed, but the number of vortex cores increased with the increase of speed. Depending on the application of the fluid machine, controlling the rotating speed within a reasonable range can effectively improve the characteristics of the clearance flow.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7635
Author(s):  
Chengzao Han ◽  
Yun Long ◽  
Mohan Xu ◽  
Bin Ji

In this paper, large eddy simulation (LES) was adopted to simulate the cavitating flow in a waterjet pump with emphasis on the tip clearance flow. The numerical results agree well with the experimental observations, which indicates that the LES method can make good predictions of the unsteady cavitating flows around a rotor blade. The LES verification and validation (LES V&V) analysis was used to reveal the influence of cavitation on the flow structures. It can be found that the LES errors in cavitating region are larger than those in the non-cavitating area, which is mainly caused by more complicated cavitating and tip clearance flow structures. Further analysis of the interaction between the cavitating and vortex flow by the relative vorticity transport equation shows that the stretching, dilatation and baroclinic torque terms have major effects on the generation and transport of vortex structure. Meanwhile the Coriolis force term and viscosity term also exacerbate the vorticity transport in the cavitating region. In addition, the flow loss characteristics of this pump are also revealed by the entropy production theory. It is indicated that the tip clearance flow and trailing edge wake flow cause the viscous dissipation and turbulent dissipation, and the cavitation can further enhance the instability of the flow field in the tip clearance.


2021 ◽  
Author(s):  
Jinkai Xu ◽  
Jin Tao ◽  
Wanfei Ren ◽  
Kun Tian ◽  
Xiaoqing Sun ◽  
...  

Abstract Aiming to solve the problems of the low electrolyte flow rate at leading edge and trailing edge and poor uniformity of the end clearance flow field during the electrochemical machining (ECM) of diffuser blades, a gap flow field simulation model was established by designing three liquid-increasing channels at the leading edge and the trailing edge of the cathode. The simulation results indicate that the liquid-increasing hole channel (LIHC) with an outlet area S of 1.5 mm2 and a distance L from channel center to edge point of 3.2 mm achieves optimal performance. In addition, the experiment results show that the optimized cathode with liquid-increasing hole channel (LIHC) significantly improves the machining efficiency, accuracy and surface quality. Specifically, the feed speed increased from 0.25 mm/min to 0.43 mm/min, the taper decreased from 4.02° to 2.45°, the surface roughness value of blade back reduced from 1.146 µm to 0.802 µm. Moreoever, the roughness of blade basin decreased from 0.961 µm to 0.708 µm, and the roughness of hub reduced from 0.179 µm to 0.119 µm. The results prove the effectiveness of the proposed method, and can be used for ECM of other complex structures with poor flow field uniformity.


Author(s):  
Lushuai Xu ◽  
Jiu Hui Wu ◽  
Yunlei Wang ◽  
Faisal Rafique ◽  
Jimin Xu ◽  
...  

The purpose of this paper is to investigate the lubrication performance and stability improvement of rocket turbopump mechanical seals by attaching superconducting magnetic force. A comprehensive multiphysics numerical model is presented including microscale clearance flow, magnetic field, as well as three degrees of freedom dynamic motion. The Maxwell equation and modified Reynolds equation considering mass-conserving boundary conditions and turbulence flow were solved simultaneously at each time step to obtain the transient response of sealing parameters. Results indicate that the mechanical seal attaching superconducting magnetic force could dramatically improve carrying capacity and lubrication characteristics under heavy loading conditions, and it also has an appreciable effect on dynamic stability. It is worth exploring the application of superconducting magnetic force in reusable rockets and cryogenic equipment combined with its unique advantages.


Author(s):  
Xingyun Jia ◽  
Lidong He ◽  
Runbo Zhang ◽  
Jian Wang ◽  
Jianjiang Yang

The flow characteristics in the rim clearances of turbines are sensitive to the turbine rim structures. From this standpoint, rotor–stator cavity models with dislocated clearances are proposed in this study to reveal the effect of dislocated turbine rim lips on hot gas ingestion and the clearance flow characteristics. The results show that the rim clearance flow is unstable, and Kelvin–Helmholtz vortices are induced by the relatively large difference in circumferential velocity of the flow fields inside and outside the rim seal. Moreover, the dislocated turbine rim lips decrease the effectiveness of the rim seal. Ultimately, the responses of the flow characteristics to the dislocated rims are determined to be primarily reflected in the effect of the forward or backward step flow on the Kelvin–Helmholtz vortices in turbine rims.


2021 ◽  
Vol 9 (7) ◽  
pp. 775
Author(s):  
Hu Zhang ◽  
Jun Wang ◽  
Desheng Zhang ◽  
Weidong Shi ◽  
Jianbo Zang

To understand the effect of cavitation on the tip leakage vortex (TLV), turbulent cavitating flows were numerically investigated using the shear-stress transport (SST) k–ω turbulence model and the Zwart–Gerber–Belamri cavitation model. In this work, two computations were performed—one without cavitation and the other with cavitation—by changing the inlet pressure of the pump. The results showed that cavitation had little effect on the pressure difference between the blade surfaces for a certain cavitation number. Instead, it changed the clearance flow and TLV vortex structure. Cavitation caused the TLV core trajectory to be farther from the suction surface and closer to the endwall upstream of the blade. Cavitation also changed the vortex strength distribution, making the vortex more dispersed. The vortex flow velocity and turbulent kinetic energy were lower, and the pressure pulsation was more intense in the cavitating case. The vorticity transport equation was used to further analyze the influence of cavitation on the evolution of vortices. Cavitation could change the vortex stretching term and delay the vortex bending term. In addition, the vortex dilation term was drastically changed at the vapor–liquid interface.


Sign in / Sign up

Export Citation Format

Share Document