tip clearance
Recently Published Documents


TOTAL DOCUMENTS

1910
(FIVE YEARS 310)

H-INDEX

48
(FIVE YEARS 7)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Yanjun Li ◽  
Qixu Lin ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Xiaotian Xu

In order to study the influence of tip clearance on the performance and energy dissipation of the axial-flow pump and the axial-flow pump as a turbine, and find the location of high dissipation rate, this study took an axial-flow pump model as its research object and designed four tip radial clearance schemes (0, 0.2, 1 and 2 mm). The unsteady calculation simulation of each tip clearance scheme was carried out based on CFD technology. The calculated results were compared with the experimental results, and the simulation results were analyzed using entropy production analysis theory. The results showed that, under both an axial-flow pump and axial-flow pump as turbine operating conditions, increasing the blade tip clearance led to a decrease in hydraulic performance. Compared with the 0 mm clearance, the maximum decreases in pump efficiency, head and shaft power under 2 mm tip clearance were 15.3%, 25.7% and 12.3% under the pump condition, and 12.7%, 18.5% and 28.8% under the turbine condition, respectively. Under the axial-flow pump operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller, guide vane and outlet passage, and the maximum variation under the flow rate of 1.0 was 53.9%, 32.1% and 54.2%, respectively. Under the axial-flow pump as a turbine operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller and outlet passage, the maximum variation under the flow rate of 1.0 was 22.7% and 17.4%, respectively. Under the design flow rate condition, with the increase in tip clearance, the dissipation rate of the blade surface showed an increasing trend under both the axial-flow pump and axial-flow pump as turbine operating conditions, and areas of high dissipation rate were generated at the rim and clearance.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 309
Author(s):  
Jung-Bo Sim ◽  
Se-Jin Yook ◽  
Young Won Kim

The organic Rankine cycle (ORC) is a thermodynamic cycle in which electrical power is generated using an organic refrigerant as a working fluid at low temperatures with low-grade enthalpy. We propose a turbine embedded in a generator (TEG), wherein the turbine rotor is embedded inside the generator rotor, thus simplifying turbine generator structure using only one bearing. The absence of tip clearance between the turbine rotor blade and casing wall in the TEG eliminates tip clearance loss, enhancing turbine efficiency. A single-stage axial-flow turbine was designed using mean-line analysis based on physical properties, and we conducted a parametric study of turbine performance, and predicted turbine efficiency and power using the tip clearance loss coefficient. When the tip clearance loss coefficient was applied, turbine isentropic efficiency and power were 0.89 and 20.42 kW, respectively, and ORC thermal efficiency was 4.81%. Conversely, the isentropic efficiency and power of the turbine without the tip clearance loss coefficient were 0.94 and 22.03 kW, respectively, and the thermal efficiency of the ORC was 5.08%. Therefore, applying the proposed TEG to the ORC system simplifies the turbine generator, while improving ORC thermal efficiency. A 3D turbine generator assembly with proposed TEG structure was also proposed.


2022 ◽  
Vol 243 ◽  
pp. 110277
Author(s):  
Xiuchang Huang ◽  
Shuaikang Shi ◽  
Zhiwei Su ◽  
Wanghao Tang ◽  
Hongxing Hua

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Zhang ◽  
Qidi Wang ◽  
Huiqun Yuan ◽  
Xin Li

Blade serial number identification is one of the key issues in blade tip-timing vibration measurement without once-per-revolution (OPR) sensor. In order to overcome the shortcomings of the existing blade serial number identification methods without OPR sensor, a new identification method of blade serial number based on blade tip clearance is proposed in this paper. The relationship between blade tip-timing data and blade serial number can be identified by the matching relationship between blade tip clearance under static state and dynamic state. According to the finite element simulation and experimental data, the accuracy of the blade serial number identification method based on blade tip clearance is verified by using the OPR sensor method. The results show that in the nonresonant rotation speed region, the method can identify the blade serial number, and the identification result is consistent with the result of the OPR sensor method. In the resonance rotation speed region, when the blade tip clearance change caused by the blade circumferential bending vibration is less than the dispersion of initial blade tip clearance, the method in this paper can accurately identify the blade serial number. Otherwise, the inference method can be used. It provides theoretical support and technical basis for the engineering application of blade tip-timing vibration measurement technology without OPR sensor.


2021 ◽  
pp. 1-22
Author(s):  
Wei Wang ◽  
Liu Boxing ◽  
Lu Jinling ◽  
Jianjun Feng ◽  
Wuli Chu ◽  
...  

Abstract Discrete tip injection is an effective method to enhance stability of compressors. This study compares the effects of injection parameters on compressor performance and underlying mechanisms in two different compressors. The transonic compressor is studied using unsteady simulations and the subsonic compressor is mainly investigated with experiment. Results show that tip injection improves stable operating range by 35.6% and 77.9% for the transonic compressor and subsonic compressor, respectively, without decreasing compressor efficiency. The effects of circumferential coverage percentage and injector throat height on compressor stability are similar in the two compressors when the injection velocity is double the velocity of main flow. The optimal injector throat height which is normalized by the tip clearance size is the same for the two compressors, and the best circumferential coverage percentage for the subsonic compressor is lower than that in the transonic compressor. For the two compressors, the adaption of the main flow to the discrete tip injection is unsteady, and the hysteresis effect that the recovery of tip blockage lags behind the recovery of tip leakage vortex accounts for the improved stability using partial coverage of injection. The injection efficiency, which is defined to quantify the improved quality of the flow field in the injection domain, is proven to determine the stall limits by studying the effects of several injection parameters. The guidelines built in the subsonic compressor can be used in the transonic compressor to design tip injection, but the optimal values of some injection parameters should be reconfirmed.


Author(s):  
Trupen Parikh ◽  
Michael Mansour ◽  
Dominique Thévenin

AbstractPump inducers are usually employed within a limited flow rate range since the performance is known to drop out significantly far from their design point. Therefore, finding an optimal geometry that ensures efficient operation for a relatively wide range of flow rates is challenging. The present study tackles this problem using multi-objective optimization to identify optimal inducer configurations, delivering high performance for a wide flow range. 3D RANS single-phase turbulent simulations were performed using the $$k-\omega$$ k - ω turbulence model. The optimization was done by employing the Non-dominated Sorting Genetic Algorithm (NSGA-II) coupled with computational fluid dynamics (CFD). An established in-house flow optimization library (OPAL++) was used to automatically control the numerical simulations. The objective is to optimize the inducer geometrical parameters to simultaneously maximize the efficiency and pressure head curves, considering different flow rates, i.e., 80% (part-load), 100% (nominal), and 150% (overload) of the optimal flow rate for the considered pump. The optimization involves 8 most relevant design parameters, i.e., the axial blade length, blade sweep angle, blade pitch, hub taper angle, tip clearance gap, blade thickness at the hub, blade thickness at the tip, and the number of blades. A total of 5178 simulations over 37 generations have been needed to get a Pareto front containing 5 optimal configurations. This article discusses quantitatively the influence of each geometrical parameter on flow behavior and inducer performance. The results reveal in general that blade length, blade sweep angle, tip clearance gap, and blade thickness should be kept low for the considered application; inducers with high hub taper angles and 3 blades lead to optimal performance.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8369
Author(s):  
Xiangyi Chen ◽  
Björn Koppe ◽  
Martin Lange ◽  
Wuli Chu ◽  
Ronald Mailach

When a compressor is throttled to the near stall point, rotating instability (RI) is often observed as significant increases of amplitude within a narrow frequency band which can be regarded as a pre-stall disturbance. In the current study, a single compressor rotor row with varying blade tip clearance (1.3%, 2.6% and 4.3% chord length) was numerically simulated using the zonal large eddy simulation model. The mesh with six blade passages was selected to capture the proper dynamic feature after being validated in comparison to the measured data, and the dynamic mode decomposition (DMD) approach was applied to the numerical temporal snapshots. In the experimental results, RIs are detected in the configurations with middle and large tip gaps (2.6% and 4.3% chord length), and the corresponding characterized frequencies are about 1/2 and 1/3 of the blade passing frequency, respectively. Simulations provide remarkable performance in capturing the measured flow features, and the DMD modes corresponding to the featured RI frequencies are successfully extracted and then visualized. The analysis of DMD results indicates that RI is essentially a presentation of the pressure wave propagating over the blade tip region. The tip leakage vortex stretches to the front part of the adjacent blade and consequently triggers the flow perturbations (waves). The wave influences the pressure distribution, which, in turn, determines the tip leakage flow and finally forms a loop.


2021 ◽  
pp. 1-17
Author(s):  
Peter F. Pelz ◽  
Sebastian Saul ◽  
Johannes Brötz

Abstract The efficiency, pressure ratio and shaft power of a fan depends on type, size, working medium and operating condition. For acceptance tests, a dissimilarity in Reynolds number, Mach number, relative roughness and relative blade tip clearance of the scaled model and prototype is unavoidable. Hence, the efficiency differs between model and prototype. This difference is quantified by scaling methods. This paper presents a validated and physics based, i. e. reliable scaling method for the efficiency, pressure ratio and shaft power of axial and centrifugal fans operating at subsonic conditions. The method is validated using test results gained on standardized test rigs for different fan types, sizes and operating conditions. For all scenarios the presented scaling method provides a much reduced scaling uncertainty compared to the reference method described in ISO 13348.


Sign in / Sign up

Export Citation Format

Share Document