scholarly journals Degree sum conditions for hamiltonian index

2021 ◽  
Vol 36 (3) ◽  
pp. 403-411
Author(s):  
Ze-meng Liu ◽  
Li-ming Xiong

AbstractIn this note, we show a sharp lower bound of $$\min \left\{{\sum\nolimits_{i = 1}^k {{d_G}({u_i}):{u_1}{u_2} \ldots {u_k}}} \right.$$ min { ∑ i = 1 k d G ( u i ) : u 1 u 2 … u k is a path of (2-)connected G on its order such that (k-1)-iterated line graphs Lk−1(G) are hamiltonian.

2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Michael Novack ◽  
Xiaodong Yan

1980 ◽  
Vol 17 (04) ◽  
pp. 1133-1137 ◽  
Author(s):  
A. O. Pittenger

Two people independently and with the same distribution guess the location of an unseen object in n-dimensional space, and the one whose guess is closer to the unseen object is declared the winner. The first person announces his guess, but the second modifies his unspoken idea by moving his guess in the direction of the first guess and as close to it as possible. It is shown that if the distribution of guesses is rotationally symmetric about the true location of the unseen object, ¾ is the sharp lower bound for the success probability of the second guesser. If the distribution is fixed and the dimension increases, then for a certain class of distributions, the success probability approaches 1.


2015 ◽  
Vol 91 (3) ◽  
pp. 353-367 ◽  
Author(s):  
JING HUANG ◽  
SHUCHAO LI

Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).


Author(s):  
Amir Taghi Karimi

The sum-connectivity index of a graph [Formula: see text] is defined as the sum of weights [Formula: see text] over all edges [Formula: see text] of [Formula: see text], where [Formula: see text] and [Formula: see text] are the degrees of the vertices [Formula: see text] and [Formula: see text] in [Formula: see text], respectively. A graph [Formula: see text] is called quasi-tree, if there exists [Formula: see text] such that [Formula: see text] is a tree. In the paper, we give a sharp lower bound on the sum-connectivity index of quasi-tree graphs.


2020 ◽  
Vol 71 (3) ◽  
pp. 981-988
Author(s):  
Sebastian Baader ◽  
Luca Studer ◽  
Roger Züst

Abstract It is known that the surface of a cone over the unit disc with large height has smaller distortion than the standard embedding of the 2-sphere in $\mathbb{R}^3$. In this note we show that distortion minimizers exist among convex embedded 2-spheres and have uniformly bounded eccentricity. Moreover, we prove that $\pi /2$ is a sharp lower bound on the distortion of embedded closed surfaces of positive genus.


Sign in / Sign up

Export Citation Format

Share Document