Fracture toughness enhancement of epoxy resin reinforced with graphene nanoplatelets and carbon nanotubes

2020 ◽  
Vol 37 (11) ◽  
pp. 2075-2083
Author(s):  
Shan-Shan Yao ◽  
Chun-Liu Ma ◽  
Fan-Long Jin ◽  
Soo-Jin Park
Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1634
Author(s):  
Yang Yuan ◽  
Zhaoming Qu ◽  
Qingguo Wang ◽  
Xiaoning Sun

With the increasing threats arising from the electromagnetic environment, polymeric composites which could exhibit nonlinear conductive characteristics are highly required in the protection of electronic devices against overvoltage. In this research, ZnO nanoparticles are coated onto graphene nanoplatelets (GNPs)-carbon nanotubes (CNTs) hybrid, and then it is embedded in epoxy resin (ER) matrix via solution blending. Based on the characterization results, CNTs are well dispersed across the GNPs which prevent the restacking of GNPs and CNTs. At the same time, ZnO nanoparticles are well-bonded to the surfaces of GNPs-CNTs hybrid. During repeated conductive characteristic measurements, GNPs-CNTs-ZnO/ER composite is able to demonstrate distinctly reversible nonlinear conductive behavior, with high nonlinear coefficients. Especially, the filler content in GNPs-CNTs-ZnO/ER composite is only 12.5% of that in GNPs-ZnO/ER composite reported in our previous work. Moreover, it is shown that the nonlinear coefficients and switching threshold voltage can be modified by controlling the weight ratios of GNPs, CNTs, and ZnO. Finally, the samples with 1:1 weight ratio of GO to MWCNTs (A-6.67 and A-10) exhibit the best reversible nonlinear conductive behavior.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3459
Author(s):  
Yi-Ming Jen ◽  
Yu-Ching Huang

The monotonic and cyclic properties of carbon fiber-reinforced epoxy (CFEP) laminate specimens with matrices modified by multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were experimentally studied. The laminate specimens were fabricated by the hand lay-up procedure and six MWCNT:GNP weight ratios, i.e., 0:0, 10:0, 0:10, 5:5, 9:1, and 1:9, were considered to prepare the nanoparticle-modified epoxy resin by using an ultrasonic homogenizer and a planetary centrifugal mixer. Then, these laminate specimens with their matrices modified under various nanofiller ratios were employed to investigate the influence of the number of nanofiller types and hybrid nanofiller ratios on the quasi-static strength, fatigue strength, and mode I fracture toughness. The experimental results show that adding individual types of nanoparticles has a slight influence on the quasi-static and fatigue strengths of the CFEP laminates. However, the remarkable synergistic effect of MWCNTs and GNPs on the studied mechanical properties of the CFEP laminates with matrices reinforced by hybrid nanoparticles has been observed. Examining the evolution of stiffness-based degradation indicates that adding hybrid nanoparticles to the matrix can reduce the degradation effectively. The high experimental data of the mode I fracture toughness of hybrid nano-CFEP laminates demonstrate that embedding hybrid nanoparticles in the matrix is beneficial to the interlaminar properties, further improving the fatigue strength. The pushout mechanism of the MWCNTs and the crack deflection effect of the GNPs suppress the growth and linkage of microcracks in the matrix. Furthermore, the bridging effect of the nanoparticles at the fiber/matrix interface retards the interfacial debonding, further improving the resistance to delamination propagation.


Author(s):  
Yang Yuan ◽  
Qingguo Wang ◽  
Xiaoning Sun ◽  
Wenjie Dong ◽  
Zhaoming Qu

Sign in / Sign up

Export Citation Format

Share Document