Purification and Characterization of an Ethanol-Tolerant β-Glucosidase from Sporidiobolus pararoseus and Its Potential for Hydrolysis of Wine Aroma Precursors

2013 ◽  
Vol 171 (7) ◽  
pp. 1681-1691 ◽  
Author(s):  
Milla Alves Baffi ◽  
Natália Martin ◽  
Thaise Mariá Tobal ◽  
Ana Lúcia Ferrarezi ◽  
João Henrique Ghilardi Lago ◽  
...  
1992 ◽  
Vol 209 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Sakayu SHIMIZU ◽  
Michihiko KATAOKA ◽  
Kentaro SHIMIZU ◽  
Masao HIRAKATA ◽  
Keiji SAKAMOTO ◽  
...  

1975 ◽  
Vol 21 (10) ◽  
pp. 1512-1518 ◽  
Author(s):  
D. F. Day ◽  
W. Yaphe

The mixture of polysaccharides in the gelling component of agar (agarose) is hydrolyzed to D-galactose and 3,6-anhydro-L-galactose by a series of hydrolytic enzymes obtained from Pseudomonas atlantica. The final degradative step in the pathway of agarose decomposition is the hydrolysis of the α-linkage in the dissaccharide neoagarobiose yielding D-galactose and 3,6-anhydro-L-galactose. Pseudomonas atlantica when grown on agar produces two specific enzymes, p-nitrophenyl α-galactose hydrolase and neoagarobiose hydrolase. The purification and partial characterization of both enzymes are presented.


1996 ◽  
Vol 316 (3) ◽  
pp. 841-846 ◽  
Author(s):  
Stuart M. PITSON ◽  
Robert J. SEVIOUR ◽  
Barbara M. McDOUGALL ◽  
Bruce A. STONE ◽  
Maruse SADEK

An endo-(1 → 6)-β-glucanase has been isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. SDS/PAGE of the purified enzyme gave a single band with an apparent molecular mass of 42.7 kDa. The enzyme is a non-glycosylated, monomeric protein with a pI of 4.9 and pH optimum of 5.0. It hydrolysed (1 → 6)-β-glucans (pustulan and lutean), initially yielding a series of (1 → 6)-β-linked oligoglucosides, consistent with endo-hydrolytic action. Final hydrolysis products from these substrates were gentiobiose and gentiotriose, with all products released as β-anomers, indicating that the enzyme acts with retention of configuration. The purified enzyme also hydrolysed Eisenia bicyclis laminarin, liberating glucose, gentiobiose, and a range of larger oligoglucosides, through the apparent hydrolysis of (1 → 6)-β- and some (1 → 3)-β-linkages in this substrate. Km values for pustulan, lutean and laminarin were 1.28, 1.38, and 1.67 mg/ml respectively. The enzyme was inhibited by N-acetylimidazole, N-bromosuccinimide, dicyclohexylcarbodi-imide, Woodward's Regent K, 2-hydroxy-5-nitrobenzyl bromide, KMnO4 and some metal ions, whereas D-glucono-1,5-lactone and EDTA had no effect.


1992 ◽  
Vol 283 (1) ◽  
pp. 69-73 ◽  
Author(s):  
M P M Romaniec ◽  
U Fauth ◽  
T Kobayashi ◽  
N S Huskisson ◽  
P J Barker ◽  
...  

An endoglucanase (1,4-beta-D-glucan glucanohydrolase, EC 3.2.1.4) from the thermophilic anaerobe Clostridium thermocellum was purified to apparent homogeneity without the use of denaturants. No carbohydrate is associated with the endoglucanase. A molecular mass of 76,000 Da was determined by SDS/PAGE. The optimal pH is 7.0 and the enzyme is isoelectric at pH 5.05. The enzyme has a temperature optimum of 70 degrees C and retains approx. 50% of its activity after 48 h at 60 degrees C. Hydrolysis of CM-cellulose takes place with a rapid decrease in viscosity but a slow liberation of reducing sugars, indicating an endoglucanase type of activity. The endoglucanase shows little ability to hydrolyse highly ordered cellulose. Cellobiose inhibits whereas Mg2+ and Ca2+ stimulate the activity. The enzyme is completely inactivated by 1 mM-Hg2+ and is inhibited by a thiol-blocking reagent.


1982 ◽  
Vol 47 (4) ◽  
pp. 1139-1148 ◽  
Author(s):  
Karel Hauzer ◽  
Linda Servítová ◽  
Tomislav Barth ◽  
Karel Jošt

Post-proline endopeptidase was isolated from pig kidneys and partially purified. The procedure consisted of fractionation with ammonium sulphate, ion exchange chromatography on DEAE-Sephadex A-50, gel filtration on Sephadex G-200 and rechromatography on DEAE-Sephadex A-50. The preparation had 55 times higher specific activity than the crude extract and did not contain any contaminating enzymic activities. The enzyme cleaved a number of proline-containing peptides and was strictly specific in catalyzing the hydrolysis of the peptide bond on the carboxyl side of the proline residue. The optimum pH for the hydrolysis of the synthetic peptides benzyl-oxycarbonylglycyl-prolyl-leucyl-glycinamide and benzyloxycarbonyl-glycyl-proline β-naphtylamide was 7.8-8.0 and, in the case of benzyloxycarbonylglycyl-proline p-nitroanilide, 7.2 to 7.5. For the hydrolysis of the tetrapeptide benzyloxycarbonylglycyl-prolyl-leucyl-glycinamide, the Km value of 75 μ mol l-1 was obtained.


Sign in / Sign up

Export Citation Format

Share Document