Existence results of fractional differential equations with irregular boundary conditions and p-Laplacian operator

2013 ◽  
Vol 46 (1-2) ◽  
pp. 33-49 ◽  
Author(s):  
Zhi-Wei Lv
2018 ◽  
Vol 23 (5) ◽  
pp. 771-801 ◽  
Author(s):  
Rodica Luca

>We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with parameters and p-Laplacian operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof of our main existence results is based on the Guo–Krasnosel'skii fixed-point theorem.


2015 ◽  
Vol 65 (1) ◽  
Author(s):  
Yiliang Liu ◽  
Liang Lu

AbstractIn this paper, we deal with multiple solutions of fractional differential equations with p-Laplacian operator and nonlinear boundary conditions. By applying the Amann theorem and the method of upper and lower solutions, we obtain some new results on the multiple solutions. An example is given to illustrate our results.


Author(s):  
Johnny Henderson ◽  
Rodica Luca

AbstractWe investigate the existence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations, subject to multipoint boundary conditions. Existence results for systems of nonlinear Hammerstein integral equations are also presented. Some nontrivial examples are included.


Sign in / Sign up

Export Citation Format

Share Document