scholarly journals Existence results for Caputo type fractional differential equations with four-point nonlocal fractional integral boundary conditions

Author(s):  
Bashir Ahmad ◽  
Ahmed Alsaedi ◽  
Afrah Assolami
Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Bashir Ahmad ◽  
Ahmed Alsaedi ◽  
Hana Al-Hutami

AbstractThis paper investigates the existence of solutions for a nonlinear boundary value problem of sequential fractional differential equations with four-point nonlocal Riemann-Liouville type fractional integral boundary conditions. We apply Banach’s contraction principle and Krasnoselskii’s fixed point theorem to establish the existence of results. Some illustrative examples are also presented.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (2) ◽  
pp. 208-221
Author(s):  
Abdelatif Boutiara ◽  
◽  
Maamar Benbachir ◽  
Kaddour Guerbati ◽  
◽  
...  

The purpose of this paper is to investigate the existence and uniqueness of solutions for a new class of nonlinear fractional differential equations involving Hilfer fractional operator with fractional integral boundary conditions. Our analysis relies on classical fixed point theorems and the Boyd-Wong nonlinear contraction. At the end, an illustrative example is presented. The boundary conditions introduced in this work are of quite general nature and can be reduce to many special cases by fixing the parameters involved in the conditions.


Sign in / Sign up

Export Citation Format

Share Document