Finite Element Model Updating for Improved Box Girder Bridges with Corrugated Steel Webs Using the Response Surface Method and Fmincon Algorithm

Author(s):  
Wei Ji ◽  
Tianyan Shao
2021 ◽  
pp. 095605992110016
Author(s):  
Ali Aborehab ◽  
Mohamed Kamel ◽  
Ahmed Farid Nemnem ◽  
Mohammed Kassem

The honeycomb sandwich structures have a crucial participation in aerospace industry, especially in the design of satellite structures due to their exceptional mechanical properties. The equivalent finite element modeling of such structures is initially presented through the implementation of modal analysis via the three-layered sandwich theory. Subsequently, the computational results are validated by carrying out an experimental modal testing. In addition, sensitivity analysis based upon design of experiments and parameters correlation, is executed for the sake of selecting the most appropriate design parameters for the optimization problem. Finally, finite element model updating of a honeycomb sandwich plate is thoroughly introduced using three optimization algorithms including genetic algorithms, adaptive-multiple optimization, and response surface method. A good agreement between the previously-mentioned optimization algorithms is obtained. Meanwhile, response surface method and its related design of experiments tool succeed in avoiding such time-consuming process and reduce the involved computational expense with an acceptable accuracy.


2013 ◽  
Vol 838-841 ◽  
pp. 1118-1121
Author(s):  
Zhao Xia Wu ◽  
Xue Shuang Fan ◽  
Yuan Long Shao ◽  
Li Peng Hu

An accurate finite element model is a necessity for analyzing the bridge's health status. The uniform design combined with response surface finite element model updating method is proposed in this paper. The error of data obtained from updating model is less than 3% by contrasting static load test data in Shihe Bridge.The result shows that the updating model has a good fit with the actual bridge.


1993 ◽  
Vol 20 (5) ◽  
pp. 754-759 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
J. Q. Zhao

A layered finite element model with material nonlinearity is developed to trace the nonlinear response of horizontally curved reinforced concrete box-girder bridges. Concrete is treated as an orthotropic nonlinear material and reinforcement is modeled as an elastoplastic strain-hardening material. Due to the fact that the flanges and webs of the structure are much different both in configuration and in the state of stresses, two types of facet shell elements, namely, the triangular generalized conforming element and the rectangular nonconforming element, are adopted to model them separately. A numerical example of a multi-cell box-girder bridge is given and the results are compared favourably with the experimental results previously obtained. Key words: finite element method, curved box-girder bridges, reinforced concrete, nonlinear analysis.


2011 ◽  
Vol 255-260 ◽  
pp. 1939-1943 ◽  
Author(s):  
Miao Yi Deng ◽  
Guang Hui Li

Employing response surface method, the complicated implicit relationship between bridge structural static-load responses and structural parameters is approximately represented by the simple explicit function. Based on this response surface model (function), the structural finite element model parameters can be easily updated by selected optimization procedure. By a numerical example of a two-span continuous beam, the essential theory and implementation of structural static response surface based finite element model updating are presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document