sandwich plate
Recently Published Documents


TOTAL DOCUMENTS

602
(FIVE YEARS 169)

H-INDEX

33
(FIVE YEARS 7)

2021 ◽  
Vol 2021 (4) ◽  
pp. 104-117
Author(s):  
K.V. Avramov ◽  
◽  
B.V. Uspensky ◽  
I.I. Derevianko ◽  
◽  
...  

A three-layer sandwich plate with a FDM-printed honeycomb core made of polycarbonate is considered. The upper and lower faces of the sandwich are made of a carbon fiber-reinforced composite. To study the response of the sandwich plate, the honeycomb core is replaced with a homogeneous layer with appropriate mechanical properties. To verify the honeycomb core model, a finite-element simulation of the representative volume of the core was performed using the ANSYS software package. A modification of the high-order shear theory is used to describe the structure dynamics. The assumed-mode method is used to simulate nonlinear forced oscillations of the plate. The Rayleigh–Ritz method is used to calculate the eigenfrequencies and eigenmodes of the plate, in which the displacement of the plate points during nonlinear oscillations are expanded. This technique allows one to obtain a finite-degree-of-freedom nonlinear dynamic system, which describes the oscillations of the plate. The frequency response of the system is calculated using the continuation approach applied to a two-point boundary value problem for nonlinear ordinary differential equations and the Floquet multiplier method, which allows one to determine the stability and bifurcations of periodic solutions. The resonance behavior of the system is analyzed using its frequency response. The proposed technique is used to analyze the forced oscillations of a square three-layer plate clamped along the contour. The results of the analysis of the free oscillations of the plate are compared with those of ANSYS finite-element simulation, and the convergence of the results with increasing number of basis functions is analyzed. The comparison shows that the results are in close agreement. The analysis of the forced oscillations shows that the plate executes essentially nonlinear oscillations with two saddle-node bifurcations in the frequency response curve, in which the periodic motion stability of the system changes. The nonlinear oscillations of the plate near the first fundamental resonance are mostly monoharmonic. They may be calculated using the describing function method.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Supen Kumar Sah ◽  
Anup Ghosh

PurposeThe purpose of this article is to carry out the thermal buckling analysis of power and sigmoid functionally graded material Sandwich plate (P-FGM and S-FGM) under uniform, linear, nonlinear and sinusoidal temperature rise.Design/methodology/approachThermal buckling of FGM Sandwich plates namely, FGM face with ceramic core (Type-A) and homogeneous face layers with FGM core (Type-B), incorporated with nonpolynomial shear deformation theories are considered for an analytical solution in this investigation. Effective material properties and thermal expansion coefficients of FGM Sandwich plates are evaluated based on Voigt's micromechanical model considering power and sigmoid law. The governing equilibrium and stability equations for the thermal buckling analysis are derived based on sinusoidal shear deformation theory (SSDT) and inverse trigonometric shear deformation theory (ITSDT) along with Von Karman nonlinearity. Analytical solutions for thermal buckling are carried out using the principle of minimum potential energy and Navier's solution technique.FindingsCritical buckling temperature of P-FGM and S-FGM Sandwich plates Type-A and B under uniform, linear, non-linear, and sinusoidal temperature rise are obtained and analyzed based on SSDT and ITSDT. Influence of power law, sigmoid law, span to thickness ratio, aspect ratio, volume fraction index, different types of thermal loadings and Sandwich plate types over critical buckling temperature are investigated. An analytical method of solution for thermal buckling of power and sigmoid FGM Sandwich plates with efficient shear deformation theories has been successfully analyzed and validated.Originality/valueThe temperature distribution across FGM plate under a high thermal environment may be uniform, linear, nonlinear, etc. In practice, temperature variation is an unpredictable phenomenon; therefore, it is essential to have a temperature distribution model which can address a sinusoidal temperature variation too. In the present work, a new sinusoidal temperature rise is proposed to describe the effect of sinusoidal temperature variation over critical buckling temperature for P-FGM and S-FGM Sandwich plates. For the first time, the FGM Sandwich plate is modeled using the sigmoid function to investigate the thermal buckling behavior under the uniform, linear, nonlinear and sinusoidal temperature rise. Nonpolynomial shear deformation theories are utilized to obtain the equilibrium and stability equations for thermal buckling analysis of P-FGM and S-FGM Sandwich plates.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jun-hua Zhang ◽  
Bao-juan Dong ◽  
Bince He ◽  
Ying Sun

The functionally graded honeycomb has the characteristic of light weight, low density, high impact resistance, noise reduction, and energy absorption as a kind of new composite inhomogeneous materials. It has the advantages of both functionally graded materials and honeycombs. In this paper, a functionally graded honeycomb sandwich plate with functionally graded distributed along the thickness of the plate is constructed. The equivalent elastic parameters of the functionally graded honeycomb core are given. Based on Reddy’s higher-order shear deformation theory (HSDT) and Hamilton’s principle, the governing partial differential equation of motion is derived under four simply supported boundary conditions. The natural frequencies of the graded honeycomb sandwich plate are obtained by both the Navier method from the governing equation and the finite element model. The results obtained by the two methods are consistent. Based on this, the effects of parameters and graded on the natural frequencies of the functionally graded honeycomb sandwich plate are studied. Finally, the dynamic responses of the functionally graded honeycomb sandwich plate under low-speed impacts are studied. The results obtained in this paper will provide a theoretical basis for further study of the complex dynamics of functionally graded honeycomb structures.


2021 ◽  
Vol 4 (398) ◽  
pp. 24-34
Author(s):  
Boris Yartsev ◽  
◽  
Viktor Ryabov ◽  
Lyudmila Parshina ◽  
◽  
...  

Object and purpose of research. The object under study is a sandwich plate with two rigid anisotropic layers and a filler of soft isotropic viscoelastic polymer. Each rigid layer is an anisotropic structure formed by a finite number of orthotropic viscoelastic composite plies of arbitrary orientation. The purpose is to develop a mathematical model of sandwich plate. Materials and methods. The mathematical model of sandwich plate decaying oscillations is based on Hamilton variational principle, Bolotin’s theory of multilayer structures, improved theory of the first order plates (Reissner-Mindlin theory), complex modulus model and principle of elastic-viscoelastic correspondence in the linear theory of viscoelasticity. In description of physical relations for rigid layers the effects of oscillation frequencies and ambient temperature are considered as negligible, while for the soft viscoelastic polymer layer the temperaturefrequency relation of elastic-dissipative characteristics are taken into account based on experimentally obtained generalized curves. Main results. Minimization of the Hamilton functional makes it possible to reduce the problem of decaying oscillations of anisotropic sandwich plate to the algebraic problem of complex eigenvalues. As a specific case of the general problem, the equations of decaying longitudinal and transversal oscillations are obtained for the globally orthotropic sandwich rod by neglecting deformations of middle surfaces of rigid layers in one of the sandwich plate rigid layer axes directions. Conclusions. The paper will be followed by description of a numerical method used to solve the problem of decaying oscillations of anisotropic sandwich plate, estimations of its convergence and reliability are given, as well as the results of numerical experiments are presented.


Sign in / Sign up

Export Citation Format

Share Document