scholarly journals Erratum to: “Die design optimization of die casting for fabrication of fuel cell aluminum bipolar plate with micro-channel through casting simulation and experimental investigation”

2014 ◽  
Vol 28 (1) ◽  
pp. 407-407
Author(s):  
ChulKyu Jin ◽  
ChangHyun Jang ◽  
DaeUp Kim ◽  
ChungGil Kang
2012 ◽  
Vol 445 ◽  
pp. 108-113 ◽  
Author(s):  
H.J. Kwon ◽  
Y.P. Jeon ◽  
Chung Gil Kang

A Proton Exchange Membrane Fuel Cell (PEMFC) is a type of fuel cell being developed for automotive applications as well as for stationary fuel cell applications and portable fuel cell applications. Its performance such as power density can be improved by the use of the bipolar plate with a new lightweight material which is one of core components making up PEMFC stack. Aluminum alloy has good mechanical properties not only in terms of density, electrical resistivity and thermal conductivity, but also in terms of corrosion resistant compared with stainless steel and graphite composites bipolar plate. Furthermore, the use of aluminum for a bipolar plate reduces simultaneously the cost and weight of it, and it contributes to the ease of machining. For these reason, an aluminum alloy is selected in this study. This study presents the feasibility of the simulation for the development of aluminum bipolar plates that consists of multi array micro channels. The analytical solutions obtained by the simulation are validated by the comparison with the experimental results. From the results, it is ensured that the stamping processes for the bipolar plate could be predicted and designed by the results of the by FE-Simulation.


2011 ◽  
Vol 31 (5) ◽  
pp. 274-283 ◽  
Author(s):  
Chul-Kyu Jin ◽  
Chang-Hyun Jang ◽  
Jae-Sung Kim ◽  
Jae-Won Choi ◽  
Chung-Gil Kang

2016 ◽  
Vol 256 ◽  
pp. 334-339 ◽  
Author(s):  
Song Chen ◽  
Fan Zhang ◽  
You Feng He ◽  
Da Quan Li ◽  
Qiang Zhu

Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity makes product design and die design, such as gating system, overflow and venting system, be different between these two die casting processes. In the present paper, taking a clamp product as an example, analyses the product optimization and die design by comparing the experimental and computational numerical simulation results. For the clamp, product structure is designed to be suitable for characters of SSM die casting process. The gating system is designed to be uniform variation of thickness, making the cross-sectional area uniformly reduce from the biscuit to the gate. This design ensures semi-solid metal slurry to fill die cavity from thick wall to thin wall. Gate position is designed at the thickest location, the gate shape of semi-solid die casting is set to be much bigger than traditional liquid casting. A good filling behaviour can be achieved by aforementioned all these design principles and it will be helpful to the intensification of pressure feeding after filling.


Sign in / Sign up

Export Citation Format

Share Document