removal and recovery
Recently Published Documents


TOTAL DOCUMENTS

833
(FIVE YEARS 189)

H-INDEX

73
(FIVE YEARS 11)

2022 ◽  
Vol 14 (2) ◽  
pp. 734
Author(s):  
Laura Daza-Serna ◽  
Katarina Knežević ◽  
Norbert Kreuzinger ◽  
Astrid Rosa Mach-Aigner ◽  
Robert Ludwig Mach ◽  
...  

Sustainability and circularity are currently two relevant drivers in the development and optimisation of industrial processes. This study assessed the use of electrodialysis (ED) to purify synthetic erythritol culture broth and for the recovery of the salts in solution, for minimising the generation of waste by representing an efficient alternative to remove ions, ensuring their recovery process contributing to reaching cleaner standards in erythritol production. Removal and recovery of ions was evaluated for synthetic erythritol culture broth at three different levels of complexity using a stepwise voltage in the experimental settings. ED was demonstrated to be a potential technology removing between 91.7–99.0% of ions from the synthetic culture broth, with 49–54% current efficiency. Besides this, further recovery of ions into the concentrated fraction was accomplished. The anions and cations were recovered in a second fraction reaching concentration factors between 1.5 to 2.5 times while observing low level of erythritol losses (<2%), with an energy consumption of 4.10 kWh/m3.


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132177
Author(s):  
Yasar K. Recepoglu ◽  
A. Yagmur Goren ◽  
Yasin Orooji ◽  
Alireza Khataee

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3320
Author(s):  
Md. Aminur Rahman ◽  
Dane Lamb ◽  
Anitha Kunhikrishnan ◽  
Mohammad Mahmudur Rahman

Excessive discharge of phosphorus (P) to aquatic ecosystems can lead to unpleasant eutrophication phenomenon. Removal and recovery of P is challenging due to low C/N ratios in wastewater, hence the development of efficient removal and recovery of P strategies is essential. In this study, zirconium–iron (Zr–FeBC) and iron modified (Fe–BC) biosolid biochars were examined to investigate their capacity for the removal of P by batch experiments. The influence of solution pH, biochar dose, initial P concentration, ionic strength, interfering ions and temperature were also studied to evaluate the P adsorption performance of biochars. The P experimental data were best described with pseudo-second order kinetics and the Freundlich isotherm model. The maximum P adsorption capacities were reached to 33.33 and 25.71 mg g−1 for 24 h by Zr–FeBC and Fe-BC at pH 5 and 4, respectively. Desorption studies were performed to investigate the reusability, cost-effectiveness and stability of the adsorbents Zr–FeBC and Fe-BC. The adsorption–desorption study suggests that both examined biochars have considerable potentiality as adsorbent candidates in removing as well as recovery of P from wastewaters. Results also reveal that the regenerated Zr–FeBC and Fe–BC could be utilized repetitively in seven adsorption–desorption cycles using NaOH as a desorbing agent, which greatly reduces the P-removal cost from wastewaters. Thus, P enriched biochar could potentially be used as fertilizer in the agriculture sector.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259315
Author(s):  
Ailton Guilherme Rissoni Toledo ◽  
Jazmina Carolina Reyes Andrade ◽  
Mauricio Cesar Palmieri ◽  
Denise Bevilaqua ◽  
Sandra Regina Pombeiro Sponchiado

Biosorption has been considered a promising technology for the treatment of industrial effluents containing heavy metals. However, the development of a cost-effective technique for biomass immobilization is essential for successful application of biosorption in industrial processes. In this study, a new method of reversible encapsulation of the highly pigmented biomass from Aspergillus nidulans mutant using semipermeable cellulose membrane was developed and the efficiency of the encapsulated biosorbent in the removal and recovery of copper ions was evaluated. Data analysis showed that the pseudo-second-order model better described copper adsorption by encapsulated biosorbent and a good correlation (r2 > 0.96) to the Langmuir isotherm was obtained. The maximum biosorption capacities for the encapsulated biosorbents were higher (333.5 and 116.1 mg g-1 for EB10 and EB30, respectively) than that for free biomass (92.0 mg g-1). SEM-EDXS and FT-IR analysis revealed that several functional groups on fungal biomass were involved in copper adsorption through ion-exchange mechanism. Sorption/desorption experiments showed that the metal recovery efficiency by encapsulated biosorbent remained constant at approximately 70% during five biosorption/desorption cycles. Therefore, this study demonstrated that the new encapsulation method of the fungal biomass using a semipermeable cellulose membrane is efficient for heavy metal ion removal and recovery from aqueous solutions in multiple adsorption-desorption cycles. In addition, this reversible encapsulation method has great potential for application in the treatment of heavy metal contaminated industrial effluents due to its low cost, the possibility of recovering adsorbed ions and the reuse of biosorbent in consecutive biosorption/desorption cycles with high efficiency of metal removal and recovery.


2021 ◽  
pp. 117891
Author(s):  
Yicheng Wang ◽  
Philipp Kuntke ◽  
Michel Saakes ◽  
Renata D. van der Weijden ◽  
Cees J.N. Buisman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document