Effect of circular cylinder location on three-dimensional natural convection in a cubical enclosure

2015 ◽  
Vol 29 (3) ◽  
pp. 1307-1318 ◽  
Author(s):  
Changyoung Choi ◽  
Hyun Woo Cho ◽  
Man Yeong Ha ◽  
Hyun Sik Yoon
2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


1986 ◽  
Vol 108 (4) ◽  
pp. 806-813 ◽  
Author(s):  
H. Ozoe ◽  
A. Mouri ◽  
M. Hiramitsu ◽  
S. W. Churchill ◽  
N. Lior

This paper presents a model and numerical results for turbulent natural convection in a cubical enclosure heated from below, cooled on a portion of one vertical side wall and insulated on all other surfaces. Three-dimensional balances were derived for material, energy, and the three components of momentum, as well as for the turbulent kinetic energy k and the rate of dissipation of turbulent kinetic energy ε. The constants used in the model were the same as those used by Fraikin et al. for two-dimensional convection in a channel. Illustrative transient calculations were carried out for Ra = 106 and 107 and Pr = 0.7. Both the dominant component of the vector potential and the Nusselt number were found to converge to a steady state. Isothermal lines and velocity vectors for vertical cross sections normal to the cooled wall indicated three-dimensional effects near the side walls. A top view of the velocity vectors revealed a downward spiral flow near the side walls along the cooled vertical wall. A weak spiral flow was also found along the side walls near the wall opposing the partially cooled one. The highest values of the eddy diffusivity were 2.6 and 5.8 times the molecular kinematic viscosity for Ra = 106 and 107, respectively. A coaxial double spiral movement, similar to that previously reported for laminar natural convection, was found for the time-averaged flow field. This computing scheme is expected to be applicable to other thermal boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document