porous layer
Recently Published Documents


TOTAL DOCUMENTS

1627
(FIVE YEARS 300)

H-INDEX

51
(FIVE YEARS 7)

2022 ◽  
Vol 10 (1) ◽  
pp. 89
Author(s):  
Luuk Barendse ◽  
Vera M. van Bergeijk ◽  
Weiqiu Chen ◽  
Jord J. Warmink ◽  
Aroen Mughal ◽  
...  

Wave overtopping can cause erosion on the landward slope due to high flow velocities and turbulence that cause high stresses on the cover. Innovative block revetments such as Grassblocks protect the subsoil of the dike against erosion. The blocks are permeable, which reduces the flow velocity and the pressures along the landward slope. The performance of these blocks is assessed in physical tests, which provides insights into the stability of the blocks. However, such experiments are expensive and accurate measurements are difficult due to highly turbulent conditions. Therefore, the goal of this study is to determine the hydrodynamic conditions at the dike cover caused by the wave run-up on the seaward slope and by the overtopping flow over the crest and landward slope. The geometry and wave conditions from the physical test at the Deltares Delta flume are implemented in an OpenFOAM® numerical model. Using the porousWaveFoam solver, a porous layer on the crest and landward slope is implemented, where the flow resistance of this porous layer largely depends on the resistance coefficients α [-] and β [-]. The numerical model is calibrated based on resistance coefficients as introduced earlier in the literature, which showed that the resistance coefficients of α=500 and β=2.0 performed best for the peak flow velocities and the peak pressures. The numerical model is evaluated by using these resistance coefficients in other time series of the physical tests. The evaluated model is then used to determine the hydrodynamic conditions on the landward slope, which showed that the pressure was the most influential hydrodynamic condition at the time of failure. Finally, the model showed that a porosity of n=0.6 and the porous layer thickness η=36mm reduced the peak pressure the most.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 223
Author(s):  
Xin Li ◽  
Bilong Liu ◽  
Qianqian Wu

A composite structure composed of a porous-material layer mosaicked with a perforated resonator is proposed to improve the low-frequency sound absorption of the porous layer. This structure is investigated in the form of a porous-material matrix (PM) and a perforated resonator (PR), and the PR is a thin perforated plate filled with porous material in its back cavity. Theoretical and numerical models are established to predict the acoustic impedance and sound absorption coefficient of the proposed structure, and two samples made of polyurethane and melamine, respectively, are tested in an impedance tube. The predicted results are consistent with that of the measured. Compared with a single porous layer with the same thickness, the results show that the designed structure provides an additional sound absorption peak at low frequencies. The proposed structure is compact and has an effective absorption bandwidth of more than two octaves especially below the frequency corresponding to 1/4 wavelength. A comparison is also made between the sound absorption coefficients of the proposed structure and a classical micro-perforated plate (MPP), and the results reveal equivalent acoustic performance, suggesting that it can be used as an alternative to the MPP for low–mid frequency sound absorption. Moreover, the influences of the main parameters on the sound absorption coefficient of PPCS are also analyzed, such as the hole diameter, area ratio, flow resistance, and porous-material thickness in the PR. The mechanism of sound absorption is discussed through the surface acoustic impedance and the distributions of particle velocity and sound pressure at several specific frequencies. This work provides a new idea for the applications of the thin porous layer in low- and medium-frequency sound absorption.


Talanta ◽  
2022 ◽  
Vol 237 ◽  
pp. 122958
Author(s):  
Lu Wang ◽  
Lele Zhou ◽  
Ning Ma ◽  
Qianqian Su ◽  
Yizhen Wan ◽  
...  

Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Suman Shekhar ◽  
Ravi Ragoju ◽  
Gudala Janardhana Reddy ◽  
Mikhail A. Sheremet

The effect of rotation and cross-diffusion on convection in a horizontal sparsely packed porous layer in a thermally conducting fluid is studied using linear stability theory. The normal mode method is employed to formulate the eigenvalue problem for the given model. One-term Galerkin weighted residual method solves the eigenvalue problem for free-free boundaries. The eigenvalue problem is solved for rigid-free and rigid-rigid boundaries using the BVP4c routine in MATLAB R2020b. The critical values of the Rayleigh number and corresponding wave number for different prescribed values of other physical parameters are analyzed. It is observed that the Taylor number and Solutal Rayleigh number significantly influence the stability characteristics of the system. In contrast, the Soret parameter, Darcy number, Dufour parameter, and Lewis number destabilize the system. The critical values of wave number for different prescribed values of other physical parameters are also analyzed. It is found that critical wave number does not depend on the Soret parameter, Lewis number, Dufour parameter, and solutal Rayleigh number; hence critical wave number has no impact on the size of convection cells. Further critical wave number acts as an increasing function of Taylor number, so the size of convection cells decreases, and the size of convection cells increases because of Darcy number.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Ikha Magdalena ◽  
Kemal Firdaus

In this paper, we formulate a numerical model to study unsteady waves generated by fluid flow over a permeable wavy bed. The model is derived from boundary value problems using potential theory. We solve the model numerically using a finite difference method. As a result, we found that the flow over a porous layer generates wave disturbed by bumps on the porous layer. The simulation also showed that the wave profile shifts from the permeable bed. The results of this study can be incorporated into the design of submerged artificial and natural breakwaters.


2021 ◽  
Vol 9 ◽  
Author(s):  
Praneet Prakash ◽  
Ottavio A. Croze

The light environment controls the swimming of microalgae through a light-seeking and avoiding behaviour, which is known as phototaxis. In this work, we exploit phototaxis to control the migration and concentration of populations of the soil microalga Chlamydomonas reinhardtii. By imaging a suspension of these microalgae in a cuvette illuminated from above by blue light, we study how phototaxis changes the stability of the suspension and demonstrate how a thin, porous layer at the top of the cuvette prevents phototaxing microalgae from sinking, leading to the up-concentration of the microalgae in the region above the porous layer. We discuss the potential implications of our findings for microalgae in biotechnological applications and the natural environment.


2021 ◽  
pp. 851-861
Author(s):  
S. Kiran ◽  
Y. H. Gangadharaiah ◽  
H. Nagarathnamma ◽  
R. Padmavathi

Sign in / Sign up

Export Citation Format

Share Document