scholarly journals A Kirchhoff-type problem involving concave-convex nonlinearities

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yuan Gao ◽  
Lishan Liu ◽  
Shixia Luan ◽  
Yonghong Wu

AbstractA Kirchhoff-type problem with concave-convex nonlinearities is studied. By constrained variational methods on a Nehari manifold, we prove that this problem has a sign-changing solution with least energy. Moreover, we show that the energy level of this sign-changing solution is strictly larger than the double energy level of the ground state solution.

2018 ◽  
Vol 61 (2) ◽  
pp. 353-369 ◽  
Author(s):  
Dongdong Qin ◽  
Yubo He ◽  
Xianhua Tang

AbstractIn this paper, we consider the following critical Kirchhoff type equation:By using variational methods that are constrained to the Nehari manifold, we prove that the above equation has a ground state solution for the case when 3 < q < 5. The relation between the number of maxima of Q and the number of positive solutions for the problem is also investigated.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Chen ◽  
Yiqing Li

AbstractThis paper is dedicated to studying the following Kirchhoff-type problem: $$ \textstyle\begin{cases} -m ( \Vert \nabla u \Vert ^{2}_{L^{2}(\mathbb{R} ^{N})} )\Delta u+V(x)u=f(u), & x\in \mathbb{R} ^{N}; \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases} $$ { − m ( ∥ ∇ u ∥ L 2 ( R N ) 2 ) Δ u + V ( x ) u = f ( u ) , x ∈ R N ; u ∈ H 1 ( R N ) , where $N=1,2$ N = 1 , 2 , $m:[0,\infty )\rightarrow (0,\infty )$ m : [ 0 , ∞ ) → ( 0 , ∞ ) is a continuous function, $V:\mathbb{R} ^{N}\rightarrow \mathbb{R} $ V : R N → R is differentiable, and $f\in \mathcal{C}(\mathbb{R} ,\mathbb{R} )$ f ∈ C ( R , R ) . We obtain the existence of a ground state solution of Nehari–Pohozaev type and the least energy solution under some assumptions on V, m, and f. Especially, the existence of nonlocal term $m(\|\nabla u\|^{2}_{L^{2}(\mathbb{R} ^{N})})$ m ( ∥ ∇ u ∥ L 2 ( R N ) 2 ) and the lack of Hardy’s inequality and Sobolev’s inequality in low dimension make the problem more complicated. To overcome the above-mentioned difficulties, some new energy inequalities and subtle analyses are introduced.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hafid Lebrimchi ◽  
Mohamed Talbi ◽  
Mohammed Massar ◽  
Najib Tsouli

In this article, we study the existence of solutions for nonlocal p x -biharmonic Kirchhoff-type problem with Navier boundary conditions. By different variational methods, we determine intervals of parameters for which this problem admits at least one nontrivial solution.


2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2021 ◽  
pp. 1-26
Author(s):  
Tianfang Wang ◽  
Wen Zhang ◽  
Jian Zhang

In this paper we study the Dirac equation with Coulomb potential − i α · ∇ u + a β u − μ | x | u = f ( x , | u | ) u , x ∈ R 3 where a is a positive constant, μ is a positive parameter, α = ( α 1 , α 2 , α 3 ), α i and β are 4 × 4 Pauli–Dirac matrices. The Dirac operator is unbounded from below and above so the associate energy functional is strongly indefinite. Under some suitable conditions, we prove that the problem possesses a ground state solution which is exponentially decay, and the least energy has continuous dependence about μ. Moreover, we are able to obtain the asymptotic property of ground state solution as μ → 0 + , this result can characterize some relationship of the above problem between μ > 0 and μ = 0.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Xiao ◽  
Canlin Gan ◽  
Qiongfen Zhang

In this paper, we study the Kirchhoff-type equation: − a + b ∫ ℝ 3     ∇ u 2 d x Δ u + V x u = Q x f u , in   ℝ 3 , where a , b > 0 , f ∈ C 1 ℝ 3 , ℝ , and V , Q ∈ C 1 ℝ 3 , ℝ + . V x and Q x are vanishing at infinity. With the aid of the quantitative deformation lemma and constraint variational method, we prove the existence of a sign-changing solution u to the above equation. Moreover, we obtain that the sign-changing solution u has exactly two nodal domains. Our results can be seen as an improvement of the previous literature.


Sign in / Sign up

Export Citation Format

Share Document