Existence of Positive Ground State Solutions for Choquard Systems

2020 ◽  
Vol 20 (4) ◽  
pp. 819-831
Author(s):  
Yinbin Deng ◽  
Qingfei Jin ◽  
Wei Shuai

AbstractWe study the existence of positive ground state solution for Choquard systems. In the autonomous case, we prove the existence of at least one positive ground state solution by the Pohozaev manifold method and symmetric-decreasing rearrangement arguments. Moreover, we show that each positive ground state solution is radial symmetric. While, in the nonautonomous case, a positive ground state solution is obtained by using a monotonicity trick and a global compactness lemma. We remark that, under our assumptions of the nonlinearity {W_{u}}, the search of ground state solutions cannot be reduced to the study of critical points of a functional restricted to a Nehari manifold.

2020 ◽  
Vol 20 (3) ◽  
pp. 511-538 ◽  
Author(s):  
Lin Li ◽  
Patrizia Pucci ◽  
Xianhua Tang

AbstractIn this paper, we study the existence of ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev exponent\left\{\begin{aligned} \displaystyle{}{-}\Delta u+V(x)u+q^{2}\phi u&% \displaystyle=\mu|u|^{p-1}u+|u|^{4}u&&\displaystyle\phantom{}\mbox{in }\mathbb% {R}^{3},\\ \displaystyle{-}\Delta\phi+a^{2}\Delta^{2}\phi&\displaystyle=4\pi u^{2}&&% \displaystyle\phantom{}\mbox{in }\mathbb{R}^{3},\end{aligned}\right.where {\mu>0} is a parameter and {2<p<5}. Under certain assumptions on V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev–Nehari manifold, the arguments of Brézis–Nirenberg, the monotonicity trick and a global compactness lemma.


2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


Author(s):  
Bartosz Bieganowski ◽  
Simone Secchi

Abstract We consider the nonlinear fractional problem $$\begin{aligned} (-\Delta )^{s} u + V(x) u = f(x,u)&\quad \hbox {in } \mathbb {R}^N \end{aligned}$$ ( - Δ ) s u + V ( x ) u = f ( x , u ) in R N We show that ground state solutions converge (along a subsequence) in $$L^2_{\mathrm {loc}} (\mathbb {R}^N)$$ L loc 2 ( R N ) , under suitable conditions on f and V, to a ground state solution of the local problem as $$s \rightarrow 1^-$$ s → 1 - .


Author(s):  
Jun Wang ◽  
Junxiang Xu ◽  
Fubao Zhang

This paper is concerned with the following semilinear elliptic equations of the formwhere ε is a small positive parameter, and where f and g denote superlinear and subcritical nonlinearity. Suppose that b(x) has at least one maximum. We prove that the system has a ground-state solution (ψε, φε) for all sufficiently small ε > 0. Moreover, we show that (ψε, φε) converges to the ground-state solution of the associated limit problem and concentrates to a maxima point of b(x) in certain sense, as ε → 0. Furthermore, we obtain sufficient conditions for nonexistence of ground-state solutions.


2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Jun Wang ◽  
Lixin Tian ◽  
Junxiang Xu ◽  
Fubao Zhang

AbstractIn this paper, we study the existence and concentration of positive ground state solutions for the semilinear Schrödinger-Poisson systemwhere ε > 0 is a small parameter and λ ≠ 0 is a real parameter, f is a continuous superlinear and subcritical nonlinearity. Suppose that b(x) has a maximum. We prove that the system has a positive ground state solution


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.


2021 ◽  
Vol 7 (1) ◽  
pp. 1015-1034
Author(s):  
Shulin Zhang ◽  
◽  

<abstract><p>In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results.</p></abstract>


2010 ◽  
Vol 53 (2) ◽  
pp. 245-255 ◽  
Author(s):  
HAIYANG HE

AbstractWe consider in this paper the problem (1) where Ω is the unit ball in ℝN centred at the origin, 0 ≤ α < pN,β > 0, N ≥ 3. Suppose qϵ → q as ϵ → 0+ and qϵ, q satisfy, respectively, we investigate the asymptotic estimates of the ground-state solutions (uϵ, vϵ) of (1) as β → + ∞ with p, qϵ fixed. We also show the symmetry-breaking phenomenon with α, β fixed and qϵ → q as ϵ → 0+. In addition, the ground-state solution is non-radial provided that ϵ > 0 is small or β is large enough.


Author(s):  
Li Wang ◽  
Tao Han ◽  
Kun Cheng ◽  
Jixiu Wang

AbstractIn this paper, we study the existence of ground state solutions for the following fractional Kirchhoff–Schrödinger–Poisson systems with general nonlinearities:$$\left\{\begin{array}{ll}\left(a+b{\left[u\right]}_{s}^{2}\right)\,{\left(-{\Delta}\right)}^{s}u+u+\phi \left(x\right)u=\left({\vert x\vert }^{-\mu }\ast F\left(u\right)\right)f\left(u\right)\hfill & \mathrm{in}\text{\ }{\mathrm{&#x211d;}}^{3}\,\text{,}\hfill \\ {\left(-{\Delta}\right)}^{t}\phi \left(x\right)={u}^{2}\hfill & \mathrm{in}\text{\ }{\mathrm{&#x211d;}}^{3}\,\text{,}\hfill \end{array}\right.$$where$${\left[u\right]}_{s}^{2}={\int }_{{\mathrm{&#x211d;}}^{3}}{\vert {\left(-{\Delta}\right)}^{\frac{s}{2}}u\vert }^{2}\,\mathrm{d}x={\iint }_{{\mathrm{&#x211d;}}^{3}{\times}{\mathrm{&#x211d;}}^{3}}\frac{{\vert u\left(x\right)-u\left(y\right)\vert }^{2}}{{\vert x-y\vert }^{3+2s}}\,\mathrm{d}x\mathrm{d}y\,\text{,}$$$s,t\in \left(0,1\right)$ with $2t+4s{ >}3,0{< }\mu {< }3-2t,$$f:{\mathrm{&#x211d;}}^{3}{\times}\mathrm{&#x211d;}\to \mathrm{&#x211d;}$ satisfies a Carathéodory condition and (−Δ)s is the fractional Laplace operator. There are two novelties of the present paper. First, the nonlocal term in the equation sets an obstacle that the bounded Cerami sequences could not converge. Second, the nonlinear term f does not satisfy the Ambrosetti–Rabinowitz growth condition and monotony assumption. Thus, the Nehari manifold method does not work anymore in our setting. In order to overcome these difficulties, we use the Pohozǎev type manifold to obtain the existence of ground state solution of Pohozǎev type for the above system.


Sign in / Sign up

Export Citation Format

Share Document