scholarly journals Growth Envelopes of Some Variable and Mixed Function Spaces

2022 ◽  
Vol 32 (3) ◽  
Author(s):  
Dorothee D. Haroske ◽  
Cornelia Schneider ◽  
Kristóf Szarvas

AbstractWe study unboundedness properties of functions belonging to Lebesgue and Lorentz spaces with variable and mixed norms using growth envelopes. Our results extend the ones for the corresponding classical spaces in a natural way. In the case of spaces with mixed norms, it turns out that the unboundedness in the worst direction, i.e., in the direction where $$p_{i}$$ p i is the smallest, is crucial. More precisely, the growth envelope is given by $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p}}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},\min \{p_{1}, \ldots , p_{d} \})$$ E G ( L p → ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , min { p 1 , … , p d } ) for mixed Lebesgue and $${\mathfrak {E}}_{{\mathsf {G}}}(L_{\overrightarrow{p},q}(\varOmega )) = (t^{-1/\min \{p_{1}, \ldots , p_{d} \}},q)$$ E G ( L p → , q ( Ω ) ) = ( t - 1 / min { p 1 , … , p d } , q ) for mixed Lorentz spaces, respectively. For the variable Lebesgue spaces, we obtain $${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot )}(\varOmega )) = (t^{-1/p_{-}},p_{-})$$ E G ( L p ( · ) ( Ω ) ) = ( t - 1 / p - , p - ) , where $$p_{-}$$ p - is the essential infimum of $$p(\cdot )$$ p ( · ) , subject to some further assumptions. Similarly, for the variable Lorentz space, it holds$${\mathfrak {E}}_{{\mathsf {G}}}(L_{p(\cdot ),q}(\varOmega )) = (t^{-1/p_{-}},q)$$ E G ( L p ( · ) , q ( Ω ) ) = ( t - 1 / p - , q ) . The growth envelope is used for Hardy-type inequalities and limiting embeddings. In particular, as a by-product, we determine the smallest classical Lebesgue (Lorentz) space which contains a fixed mixed or variable Lebesgue (Lorentz) space, respectively.

Author(s):  
S.G. Samko ◽  
S.M. Umarkhadzhiev

The so called grand spaces nowadays are one of the main objects in the theory of function spaces. Grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in the case of sets $\Omega$ with finite measure $|\Omega|<\infty$, and by the authors in the case $|\Omega|=\infty$. The latter is based on introduction of the notion of grandizer. The idea of "grandization" was also applied in the context of Morrey spaces. In this paper we develop the idea of grandization to more general Morrey spaces $L^{p,q,w}(\mathbb{R}^n)$, known as Morrey type spaces. We introduce grand Morrey type spaces, which include mixed and partial grand versions of such spaces. The mixed grand space is defined by the norm $$ \sup_{\varepsilon,\delta} \varphi(\varepsilon,\delta)\sup_{x\in E} \left(\int\limits_{0}^{\infty}{w(r)^{q-\delta}}b(r)^{\frac{\delta}{q}} \left(\,\int\limits_{|x-y|<r}\big|f(y)\big|^{p-\varepsilon} a(y)^{\frac{\varepsilon}{p}}\,dy\right)^{\frac{q-\delta}{p-\varepsilon}} \frac{dr}{r}\right)^{\frac{1}{q-\varepsilon}} $$ with the use of two grandizers $a$ and $b$. In the case of grand spaces, partial with respect to the exponent $q$, we study the boundedness of some integral operators. The class of these operators contains, in particular, multidimensional versions of Hardy type and Hilbert operators.


2021 ◽  
pp. 1001-1016
Author(s):  
Sorina Barza ◽  
Ludmila Nikolova ◽  
Lars-Erik Persson ◽  
Markos Yimer

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 984
Author(s):  
Pedro J. Miana ◽  
Natalia Romero

Generalized Laguerre polynomials, Ln(α), verify the well-known Rodrigues’ formula. Using Weyl and Riemann–Liouville fractional calculi, we present several fractional generalizations of Rodrigues’ formula for generalized Laguerre functions and polynomials. As a consequence, we give a new addition formula and an integral representation for these polynomials. Finally, we introduce a new family of fractional Lebesgue spaces and show that some of these special functions belong to them.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ahmed A. El-Deeb ◽  
Hamza A. Elsennary ◽  
Dumitru Baleanu

1998 ◽  
Vol 194 (1) ◽  
pp. 23-33 ◽  
Author(s):  
D. E. Edmunds ◽  
R. Hurri-Syrjänen

Sign in / Sign up

Export Citation Format

Share Document