Structure and function of the mating-type locus in the homothallic ascomycete, Didymella zeae-maydis

2013 ◽  
Vol 51 (6) ◽  
pp. 814-820 ◽  
Author(s):  
Sung-Hwan Yun ◽  
Olen C. Yoder ◽  
B. Gillian Turgeon
1996 ◽  
Vol 29 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Amy L. Marion ◽  
Kirk A. Bartholomew ◽  
Jian Wu ◽  
Huiling Yang ◽  
Charles P. Novotny ◽  
...  

1996 ◽  
Vol 29 (2) ◽  
pp. 143-149
Author(s):  
A. L. Marion ◽  
Kirk A. Bartholomew ◽  
Jian Wu ◽  
H. Yang ◽  
Charles P. Novotny ◽  
...  

1981 ◽  
Vol 1 (10) ◽  
pp. 958-960 ◽  
Author(s):  
J Rine ◽  
G F Sprague ◽  
I Herskowitz

Sporulation in Saccharomyces cerevisiae normally occurs only in MATa/MAT alpha diploids. We show that mutations in RME1 bypassed the requirements for both a and alpha mating type information in sporulation and therefore allowed MATa/MATa and MAT alpha/MAT alpha diploids to sporulate. RME1 was located on chromosome VII, between LEU1 and ADE6.


1984 ◽  
Vol 4 (4) ◽  
pp. 771-778
Author(s):  
S Harashima ◽  
A Takagi ◽  
Y Oshima

The frequency of cell fusion during transformation of yeast protoplasts with various yeast plasmids with a chromosome replicon (YRp or YCp) or 2 mu DNA (YEp) was estimated by two methods. In one method, a mixture of protoplasts of two haploid strains with identical mating type and complementary auxotrophic nuclear markers with or without cytoplasmic markers was transformed. When the number of various phenotypic classes of transformants for the nuclear markers was analyzed by equations derived from binominal distribution theory, the frequency of nuclear fusion among the transformants was 42 to 100% in transformations with the YRp or YCp plasmids and 28 to 39% with the YEp plasmids. In another method, a haploid bearing the sir mutation, which allows a diploid (or polyploid) homozygous for the MAT (mating type) locus to sporulate by the expression of the silent mating-type loci HML and HMR, was transformed with the plasmids. Sporulation ability was found in 43 to 95% of the transformants with the YRp or YCp plasmids, and 26 to 31% of the YEp transformants. When cytoplasmic mixing was included with the nuclear fusion, 96 to 100% of the transformants were found to be cell fusants. Based upon these observations, we concluded that transformation of yeast protoplasts is directly associated with cell fusion.


Genetics ◽  
1977 ◽  
Vol 85 (3) ◽  
pp. 373A-393
Author(s):  
James B Hicks ◽  
Ira Herskowitz

ABSTRACT The two mating types of the yeast Saccharomyces cerevisiae can be interconverted in both homothallic and heterothallic strains. Previous work indicates that all yeast cells contain the information to be both a and α and that the HO gene (in homothallic strains) promotes a change in mating type by causing a change at the mating type locus itself. In both heterothallic and homothallic strains, a defective α mating type locus can be converted to a functional a locus and subsequently to a functional α locus. In contrast, action of the HO gene does not restore mating ability to a strain defective in another gene for mating which is not at the mating type locus. These observations indicate that a yeast cell contains an additional copy (or copies) of α information, and lead to the "cassette" model for mating type interconversion. In this model, HM  a and hmα loci are blocs of unexpressed α regulatory information, and HMα and hm  a loci are blocs of unexpressed a regulatory information. These blocs are silent because they lack an essential site for expression, and become active upon insertion of this information (or a copy of the information) into the mating type locus by action of the HO gene.


Sign in / Sign up

Export Citation Format

Share Document