Transformation of protoplasted yeast cells is directly associated with cell fusion

1984 ◽  
Vol 4 (4) ◽  
pp. 771-778
Author(s):  
S Harashima ◽  
A Takagi ◽  
Y Oshima

The frequency of cell fusion during transformation of yeast protoplasts with various yeast plasmids with a chromosome replicon (YRp or YCp) or 2 mu DNA (YEp) was estimated by two methods. In one method, a mixture of protoplasts of two haploid strains with identical mating type and complementary auxotrophic nuclear markers with or without cytoplasmic markers was transformed. When the number of various phenotypic classes of transformants for the nuclear markers was analyzed by equations derived from binominal distribution theory, the frequency of nuclear fusion among the transformants was 42 to 100% in transformations with the YRp or YCp plasmids and 28 to 39% with the YEp plasmids. In another method, a haploid bearing the sir mutation, which allows a diploid (or polyploid) homozygous for the MAT (mating type) locus to sporulate by the expression of the silent mating-type loci HML and HMR, was transformed with the plasmids. Sporulation ability was found in 43 to 95% of the transformants with the YRp or YCp plasmids, and 26 to 31% of the YEp transformants. When cytoplasmic mixing was included with the nuclear fusion, 96 to 100% of the transformants were found to be cell fusants. Based upon these observations, we concluded that transformation of yeast protoplasts is directly associated with cell fusion.

1984 ◽  
Vol 4 (4) ◽  
pp. 771-778 ◽  
Author(s):  
S Harashima ◽  
A Takagi ◽  
Y Oshima

The frequency of cell fusion during transformation of yeast protoplasts with various yeast plasmids with a chromosome replicon (YRp or YCp) or 2 mu DNA (YEp) was estimated by two methods. In one method, a mixture of protoplasts of two haploid strains with identical mating type and complementary auxotrophic nuclear markers with or without cytoplasmic markers was transformed. When the number of various phenotypic classes of transformants for the nuclear markers was analyzed by equations derived from binominal distribution theory, the frequency of nuclear fusion among the transformants was 42 to 100% in transformations with the YRp or YCp plasmids and 28 to 39% with the YEp plasmids. In another method, a haploid bearing the sir mutation, which allows a diploid (or polyploid) homozygous for the MAT (mating type) locus to sporulate by the expression of the silent mating-type loci HML and HMR, was transformed with the plasmids. Sporulation ability was found in 43 to 95% of the transformants with the YRp or YCp plasmids, and 26 to 31% of the YEp transformants. When cytoplasmic mixing was included with the nuclear fusion, 96 to 100% of the transformants were found to be cell fusants. Based upon these observations, we concluded that transformation of yeast protoplasts is directly associated with cell fusion.


Genetics ◽  
1977 ◽  
Vol 85 (3) ◽  
pp. 373A-393
Author(s):  
James B Hicks ◽  
Ira Herskowitz

ABSTRACT The two mating types of the yeast Saccharomyces cerevisiae can be interconverted in both homothallic and heterothallic strains. Previous work indicates that all yeast cells contain the information to be both a and α and that the HO gene (in homothallic strains) promotes a change in mating type by causing a change at the mating type locus itself. In both heterothallic and homothallic strains, a defective α mating type locus can be converted to a functional a locus and subsequently to a functional α locus. In contrast, action of the HO gene does not restore mating ability to a strain defective in another gene for mating which is not at the mating type locus. These observations indicate that a yeast cell contains an additional copy (or copies) of α information, and lead to the "cassette" model for mating type interconversion. In this model, HM  a and hmα loci are blocs of unexpressed α regulatory information, and HMα and hm  a loci are blocs of unexpressed a regulatory information. These blocs are silent because they lack an essential site for expression, and become active upon insertion of this information (or a copy of the information) into the mating type locus by action of the HO gene.


Genetics ◽  
1979 ◽  
Vol 93 (4) ◽  
pp. 903-916
Author(s):  
Marjorie Crandall ◽  
Joan H Caulton

ABSTRACT Diploids of the yeast Hansenula wingei are nonagglutinative and do not form zygotes in mixed cultures with either sexually agglutinative haploid mating type. However, a low frequency of diploid x haploid cell fusions (about 10-3) is detectable by prototrophic selection. This frequency of rare diploid x haploid matings is not increased after the diploid culture is induced for sexual agglutination. Therefore, we conclude that genes that repress mating are different from those that repress sexual agglutination.——Six prototrophs isolated from one diploid x haploid cross had an average DNA value (¼g DNA per 108 cells) of 6.19, compared to 2.53 and 4.35 for the haploid and diploid swains, respectively. Four prototrophs were clearly cell-fusion products because they contained genes from both the diploid and the haploid partners. However, genetic analysis of the prototrophs yielded results inconsistent with triploid meiosis; all six isolates yielded a 2:2 segregation for the mating-type alleles and linked genes.——Mitotic segregation of monosomic (2n-1) cells lacking one homolog of the chromosome carrying the mating-type locus is proposed to explain the rare production of sexually active cells in the diploid cultures. Fusion between such monosomic cells and normal haploids is thought to have produced 3n-1 cells, disomic for the chromosome carrying the mating-type locus. We conclude that in the diploid strain we studied, the physiological mechanisms repressing sexual agglutination and conjugation function efficiently, but events occurring during mitosis lead to a low frequency of genetically altered cells in the population.


2001 ◽  
Vol 69 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Klaus B. Lengeler ◽  
Gary M. Cox ◽  
Joseph Heitman

ABSTRACT Cryptococcus neoformans is a pathogenic basidiomycete with a defined sexual cycle involving mating between haploid yeast cells with a transient diploid state. C. neoformans occurs in four predominant serotypes (A, B, C, and D), which represent different varieties or species. Rare clinical and environmental isolates with an unusual AD serotype have been reported and suggested to be diploid. We found by fluorescence-activated cell sorter analysis that serotype AD strains are aneuploid or diploid. PCR analysis with primers specific for serotype A or D alleles of theCNA1, CLA4, and GPA1 genes revealed that both alleles are often present in serotype AD strains. PCR analysis with primers specific for genes in the MATa orMATα mating-type loci revealed that serotype AD strains are heterozygous for the mating-type locus. Interestingly, in several serotype AD strains, the MATα locus was derived from the serotype D parent and the MATa locus was inherited from a serotype A parent that has been thought to be extinct. Basidiospores from a self-fertile serotype AD strain bearing the putative serotype AMATa locus showed a very low viability (∼5%), and no fertile serotype A MATa strain could be recovered. Serotype AD strains were virulent in a murine model. Hybrid AD strains could readily be isolated following a laboratory cross between a serotype A strain and a serotype D strain. In summary, serotype AD strains ofC. neoformans are unusual aneuploid or diploid strains that result from matings between serotype A and D strains. Self-fertile isolates fail to undergo normal meiosis because of genetic divergence. Our findings further suggest that serotype A MATa strains may exist in nature.


1981 ◽  
Vol 1 (10) ◽  
pp. 958-960 ◽  
Author(s):  
J Rine ◽  
G F Sprague ◽  
I Herskowitz

Sporulation in Saccharomyces cerevisiae normally occurs only in MATa/MAT alpha diploids. We show that mutations in RME1 bypassed the requirements for both a and alpha mating type information in sporulation and therefore allowed MATa/MATa and MAT alpha/MAT alpha diploids to sporulate. RME1 was located on chromosome VII, between LEU1 and ADE6.


1993 ◽  
Vol 13 (3) ◽  
pp. 1962-1970
Author(s):  
T D Moore ◽  
J C Edman

The opportunistic fungal pathogen Cryptococcus neoformans has two mating types, MATa and MAT alpha. The MAT alpha strains are more virulent. Mating of opposite mating type haploid yeast cells results in the production of a filamentous hyphal phase. The MAT alpha locus has been isolated in this study in order to identify the genetic differences between mating types and their contribution to virulence. A 138-bp fragment of MAT alpha-specific DNA which cosegregates with alpha-mating type was isolated by using a difference cloning method. Overlapping phage and cosmid clones spanning the entire MAT alpha locus were isolated by using this MAT alpha-specific fragment as a probe. Mapping of these clones physically defined the MAT alpha locus to a 35- to 45-kb region which is present only in MAT alpha strains. Transformation studies with fragments of the MAT alpha locus identified a 2.1-kb XbaI-HindIII fragment that directs starvation-induced filament formation in MATa cells but not in MAT alpha cells. This 2.1-kb fragment contains a gene, MF alpha, with a small open reading frame encoding a pheromone precursor similar to the lipoprotein mating factors found in Saccharomyces cerevisiae, Ustilago maydis, and Schizosaccharomyces pombe. The ability of the MATa cells to express, process, and secrete the MAT alpha pheromone in response to starvation suggests similar mechanisms for these processes in both cell types. These results also suggest that the production of pheromone is under a type of nutritional control shared by the two cell types.


Sign in / Sign up

Export Citation Format

Share Document