On the Number of the Classes of Topological Conjugacy of Pixton Diffeomorphisms

2021 ◽  
Vol 20 (3) ◽  
Author(s):  
P. M. Akhmet’ev ◽  
T. V. Medvedev ◽  
O. V. Pochinka
2020 ◽  
Vol 7 (1) ◽  
pp. 163-175
Author(s):  
Mehdi Pourbarat

AbstractWe study the theory of universality for the nonautonomous dynamical systems from topological point of view related to hypercyclicity. The conditions are provided in a way that Birkhoff transitivity theorem can be extended. In the context of generalized linear nonautonomous systems, we show that either one of the topological transitivity or hypercyclicity give sensitive dependence on initial conditions. Meanwhile, some examples are presented for topological transitivity, hypercyclicity and topological conjugacy.


2021 ◽  
Vol 29 (6) ◽  
pp. 835-850
Author(s):  
Vladislav Kruglov ◽  
◽  
Olga Pochinka ◽  
◽  

Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to find an invariant that shows that there exists a homeomorphism that transfers the trajectories of one flow to the trajectories of another while preserving the direction of movement and the time of movement along the trajectories; for the obtained invariant, to construct a polynomial algorithm for recognizing its isomorphism and to construct the realisation of the invariant by a standard flow on the surface. Methods. Methods for finding moduli of topological conjugacy go back to the classical works of J. Palis, W. di Melo and use smooth flow lianerization in a neighborhood of equilibrium states and limit cycles. For the classification of flows, the traditional methods of dividing the phase surface into regions with the same behavior of trajectories are used, which are a modification of the methods of A. A. Andronov, E. A. Leontovich, and A. G. Mayer. Results. It is shown that a Morse – Smale flow on a surface has a finite number of moduli if and only if it does not have a trajectory going from one limit cycle to another. For a subclass of Morse – Smale flows with a finite number of moduli, a classification is done up to topological conjugacy by means of an equipped graph. Conclusion. The criterion for the finiteness of the number of moduli of Morse – Smale flows on surfaces is obtained. A topological invariant is constructed that describes the topological conjugacy class of a Morse – Smale flow on a surface with a finite number of modules, that is, without trajectories going from one limit cycle to another.


Author(s):  
V. E. Kruglov

In 1978 J. Palis invented continuum topologically non-conjugate systems in a neighbourhood of a system with a heteroclinic contact; in other words, he invented so-called moduli. W. de Melo and С. van Strien in 1987 described a diffeomorphism class with a finite number of moduli. They discovered that a chain of saddles taking part in the heteroclinic contact of such diffeomorphism includes not more than three saddles. Surprisingly, such effect does not happen in flows. Here we consider gradient flows of the height function for an orientable surface of genus g>0. Such flows have a chain of 2g saddles. We found that the number of moduli for such flows is 2g−1 which is the straight consequence of the sufficient topological conjugacy conditions for such systems given in our paper. A complete topological equivalence invariant for such systems is four-colour graph carrying the information about its cells relative position. Equipping the graph's edges with the analytical parameters --- moduli, connected with the saddle connections, gives the sufficient conditions of the flows topological conjugacy.


2021 ◽  
pp. 53-60
Author(s):  
Robert L. Devaney

2020 ◽  
pp. 1-18
Author(s):  
JORGE GROISMAN ◽  
ZBIGNIEW NITECKI

Abstract A diffeomorphism of theplane is Anosov if it has a hyperbolic splitting at every point of the plane. In addition to linear hyperbolic automorphisms, translations of the plane also carry an Anosov structure (the existence of Anosov structures for plane translations was originally shown by White). Mendes conjectured that these are the only topological conjugacy classes for Anosov diffeomorphisms in the plane. Very recently, Matsumoto gave an example of an Anosov diffeomorphism of the plane, which is a Brouwer translation but not topologically conjugate to a translation, disproving Mendes’ conjecture. In this paper we prove that Mendes’ claim holds when the Anosov diffeomorphism is the time-one map of a flow, via a theorem about foliations invariant under a time-one map. In particular, this shows that the kind of counterexample constructed by Matsumoto cannot be obtained from a flow on the plane.


1977 ◽  
Vol 67 ◽  
pp. 41-52 ◽  
Author(s):  
Masahiro Kurata

Hartman proved that a diffeomorphism is topologically conjugate to a linear map on a neighbourhood of a hyperbolic fixed point ([3]). In this paper we study the topological conjugacy problem of a diffeomorphism on a neighbourhood of a hyperbolic set, and prove that for any hyperbolic set there is an arbitrarily slight extension to which a sub-shift of finite type is semi-conjugate.


Sign in / Sign up

Export Citation Format

Share Document