anosov diffeomorphism
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 1-26
Author(s):  
GIOVANNI FORNI

Abstract We prove that the asymptotics of ergodic integrals along an invariant foliation of a toral Anosov diffeomorphism, or of a pseudo-Anosov diffeomorphism on a compact orientable surface of higher genus, is determined (up to a logarithmic error) by the action of the diffeomorphism on the cohomology of the surface. As a consequence of our argument and of the results of Giulietti and Liverani [Parabolic dynamics and anisotropic Banach spaces. J. Eur. Math. Soc. (JEMS)21(9) (2019), 2793–2858] on horospherical averages, toral Anosov diffeomorphisms have no Ruelle resonances in the open interval $(1, e^{h_{\mathrm {top}}})$ .


Author(s):  
Andrei I. Morozov

Abstract. According to Thurston’s classification, the set of homotopy classes of orientation-preserving homeomorphisms of orientable surfaces is split into four disjoint subsets. A homotopy class from each subset is characterized by the existence of a homeomorphism called Thurston’s canonical form, namely: a periodic homeomorphism, a reducible nonperiodic homeomorphism of algebraically finite order, a reducible homeomorphism that is not a homeomorphism of an algebraically finite order, and a pseudo-Anosov homeomorphism. Thurston’s canonical forms are not structurally stable diffeomorphisms. Therefore, the problem naturally arises of constructing the simplest (in a certain sense) structurally stable diffeomorphisms in each homotopy class. In this paper, the problem posed is solved for torus homeomorphisms. In each homotopy class, structurally stable representatives are analytically constructed, namely, a gradient-like diffeomorphism, a Morse-Smale diffeomorphism with an orientable heteroclinic, and an Anosov diffeomorphism, which is a particular case of a pseudo-Anosov diffeomorphism.


2021 ◽  
pp. 1-40
Author(s):  
ALENA ERCHENKO

Abstract We consider a smooth area-preserving Anosov diffeomorphism $f\colon \mathbb T^2\rightarrow \mathbb T^2$ homotopic to an Anosov automorphism L of $\mathbb T^2$ . It is known that the positive Lyapunov exponent of f with respect to the normalized Lebesgue measure is less than or equal to the topological entropy of L, which, in addition, is less than or equal to the Lyapunov exponent of f with respect to the probability measure of maximal entropy. Moreover, the equalities only occur simultaneously. We show that these are the only restrictions on these two dynamical invariants.


2021 ◽  
pp. 1-14
Author(s):  
VIVIANE BALADI

Abstract We show that the ergodic integrals for the horocycle flow on the two-torus associated by Giulietti and Liverani with an Anosov diffeomorphism either grow linearly or are bounded; in other words, there are no deviations. For this, we use the topological invariance of the Artin–Mazur zeta function to exclude resonances outside the open unit disc. Transfer operators acting on suitable spaces of anisotropic distributions and their Ruelle determinants are the key tools used in the proof. As a bonus, we show that for any $C^\infty $ Anosov diffeomorphism F on the two-torus, the correlations for the measure of maximal entropy and $C^\infty $ observables decay with a rate strictly smaller than $e^{-h_{\mathrm {top}}(F)}$ . We compare our results with very recent related work of Forni.


2020 ◽  
pp. 1-18
Author(s):  
JORGE GROISMAN ◽  
ZBIGNIEW NITECKI

Abstract A diffeomorphism of theplane is Anosov if it has a hyperbolic splitting at every point of the plane. In addition to linear hyperbolic automorphisms, translations of the plane also carry an Anosov structure (the existence of Anosov structures for plane translations was originally shown by White). Mendes conjectured that these are the only topological conjugacy classes for Anosov diffeomorphisms in the plane. Very recently, Matsumoto gave an example of an Anosov diffeomorphism of the plane, which is a Brouwer translation but not topologically conjugate to a translation, disproving Mendes’ conjecture. In this paper we prove that Mendes’ claim holds when the Anosov diffeomorphism is the time-one map of a flow, via a theorem about foliations invariant under a time-one map. In particular, this shows that the kind of counterexample constructed by Matsumoto cannot be obtained from a flow on the plane.


2020 ◽  
pp. 1-12
Author(s):  
PABLO D. CARRASCO ◽  
ENRIQUE PUJALS ◽  
FEDERICO RODRIGUEZ-HERTZ

Abstract Consider a three-dimensional partially hyperbolic diffeomorphism. It is proved that under some rigid hypothesis on the tangent bundle dynamics, the map is (modulo finite covers and iterates) an Anosov diffeomorphism, a (generalized) skew-product or the time-one map of an Anosov flow, thus recovering a well-known classification conjecture of the second author to this restricted setting.


2020 ◽  
Vol 40 (1) ◽  
pp. 441-465
Author(s):  
Christian Bonatti ◽  
◽  
Stanislav Minkov ◽  
Alexey Okunev ◽  
Ivan Shilin ◽  
...  

2019 ◽  
pp. 1-12
Author(s):  
SHIGENORI MATSUMOTO

We construct an example of a fixed point free Anosov diffeomorphism of the plane, which is not topologically conjugate to a translation.


2019 ◽  
Vol 17 (1) ◽  
pp. 191-201 ◽  
Author(s):  
Manseob Lee

Abstract Let M be a closed smooth Riemannian manifold and let f : M → M be a diffeomorphism. We show that if f has the C1 robustly asymptotic orbital shadowing property then it is an Anosov diffeomorphism. Moreover, for a C1 generic diffeomorphism f, if f has the asymptotic orbital shadowing property then it is a transitive Anosov diffeomorphism. In particular, we apply our results to volume-preserving diffeomorphisms.


2018 ◽  
Vol 40 (4) ◽  
pp. 1083-1107
Author(s):  
WEISHENG WU

Let$g:M\rightarrow M$be a$C^{1+\unicode[STIX]{x1D6FC}}$-partially hyperbolic diffeomorphism preserving an ergodic normalized volume on$M$. We show that, if$f:M\rightarrow M$is a$C^{1+\unicode[STIX]{x1D6FC}}$-Anosov diffeomorphism such that the stable subspaces of$f$and$g$span the whole tangent space at some point on$M$, the set of points that equidistribute under$g$but have non-dense orbits under$f$has full Hausdorff dimension. The same result is also obtained when$M$is the torus and$f$is a toral endomorphism whose center-stable subspace does not contain the stable subspace of$g$at some point.


Sign in / Sign up

Export Citation Format

Share Document