gradient flows
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 101)

H-INDEX

30
(FIVE YEARS 5)

Author(s):  
Manuel Friedrich ◽  
Lennart Machill

AbstractWe consider a two-dimensional model of viscoelastic von Kármán plates in the Kelvin’s-Voigt’s rheology derived from a three-dimensional model at a finite-strain setting in Friedrich and Kružík (Arch Ration Mech Anal 238: 489–540, 2020). As the width of the plate goes to zero, we perform a dimension-reduction from 2D to 1D and identify an effective one-dimensional model for a viscoelastic ribbon comprising stretching, bending, and twisting both in the elastic and the viscous stress. Our arguments rely on the abstract theory of gradient flows in metric spaces by Sandier and Serfaty (Commun Pure Appl Math 57:1627–1672, 2004) and complement the $$\Gamma $$ Γ -convergence analysis of elastic von Kármán ribbons in Freddi et al. (Meccanica 53:659–670, 2018). Besides convergence of the gradient flows, we also show convergence of associated time-discrete approximations, and we provide a corresponding commutativity result.


Author(s):  
Tim Laux ◽  
Jona Lelmi

AbstractWe provide a new convergence proof of the celebrated Merriman–Bence–Osher scheme for multiphase mean curvature flow. Our proof applies to the new variant incorporating a general class of surface tensions and mobilities, including typical choices for modeling grain growth. The basis of the proof are the minimizing movements interpretation of Esedoḡlu and Otto and De Giorgi’s general theory of gradient flows. Under a typical energy convergence assumption we show that the limit satisfies a sharp energy-dissipation relation.


Author(s):  
Mark A. Peletier ◽  
Riccarda Rossi ◽  
Giuseppe Savaré ◽  
Oliver Tse

AbstractWe have created a functional framework for a class of non-metric gradient systems. The state space is a space of nonnegative measures, and the class of systems includes the Forward Kolmogorov equations for the laws of Markov jump processes on Polish spaces. This framework comprises a definition of a notion of solutions, a method to prove existence, and an archetype uniqueness result. We do this by using only the structure that is provided directly by the dissipation functional, which need not be homogeneous, and we do not appeal to any metric structure.


SeMA Journal ◽  
2021 ◽  
Author(s):  
José M. Mazón ◽  
Marcos Solera ◽  
Julián Toledo

AbstractRecently, motivated by problems in image processing, by the analysis of the peridynamic formulation of the continuous mechanic and by the study of Markov jump processes, there has been an increasing interest in the research of nonlocal partial differential equations. In the last years and with these problems in mind, we have studied some gradient flows in the general framework of a metric random walk space, that is, a Polish metric space (X, d) together with a probability measure assigned to each $$x\in X$$ x ∈ X , which encode the jumps of a Markov process. In this way, we have unified into a broad framework the study of partial differential equations in weighted discrete graphs and in other nonlocal models of interest. Our aim here is to provide a summary of the results that we have obtained for the heat flow and the total variational flow in metric random walk spaces. Moreover, some of our results on other problems related to the diffusion operators involved in such processes are also included, like the ones for evolution problems of p-Laplacian type with nonhomogeneous Neumann boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document