Estimation of oil saturation via pseudo capillary pressure curve from nuclear magnetic resonance log data in tight conglomerate reservoirs

2020 ◽  
Vol 13 (13) ◽  
Author(s):  
Yong Song ◽  
Cheng Feng ◽  
Zhenlin Wang ◽  
Zhongchun Sun
2019 ◽  
Vol 2 (2) ◽  

The quality of a reservoir can be described in details by the application of transverse relaxation time of nuclear magnetic resonance fractal dimension. The objective of this research is to calculate fractal dimension from the relationship among transverse relaxation time of nuclear magnetic resonance, maximum transverse relaxation time of nuclear magnetic resonance and wetting phase saturation and to confirm it by the fractal dimension derived from the relationship among capillary pressure and wetting phase saturation. In this research, porosity was measured on real collected sandstone samples and permeability was calculated theoretically from capillary pressure profile measured by mercury intrusion techniques. Two equations for calculating the fractal dimensions have been employed. The first one describes the functional relationship between wetting phase saturation, transverse relaxation time of nuclear magnetic resonance, maximum transverse relaxation time of nuclear magnetic resonance and fractal dimension. The second equation implies to the wetting phase saturation as a function of capillary pressure and the fractal dimension. Two procedures for obtaining the fractal dimension have been developed. The first procedure was done by plotting the logarithm of the ratio between transverse relaxation time of nuclear magnetic resonance and maximum transverse relaxation time of nuclear magnetic resonance versus logarithm wetting phase saturation. The slope of the first procedure = 3-Df (fractal dimension). The second procedure for obtaining the fractal dimension was completed by plotting logarithm of capillary pressure versus the logarithm of wetting phase saturation. The slope of the second procedure = Df -3. The results show similarities between transverse relaxation time of nuclear magnetic resonance and capillary pressure fractal dimension.


2019 ◽  
Vol 17 (2) ◽  
pp. 328-338
Author(s):  
Xiaojun Wang ◽  
Zhenlin Wang ◽  
Cheng Feng ◽  
Tao Zhu ◽  
Ni Zhang ◽  
...  

Abstract Due to complex lithology, strong heterogeneity, low porosity and permeability; resistivity logging faces great challenges in oil saturation prediction of tight conglomerate reservoirs. First, 10 typical core samples were selected to measure and analyse the porosity, permeability, nuclear magnetic resonance (NMR) T2 spectrum and mercury injection capillary pressure (MICP) curve. Second, an empirical method was proposed for reconstructing the NMR T2 spectrum under completely watered conditions using MICP curve based on the ‘three-piece’ power function. The parameters of different models were calibrated via experimental data analysis, respectively. The 180 core experimental data from an MICP curve were used as the input database. Porosity and permeability were regarded as the MICP data selection criteria to apply this model in formation evaluation. The comparison results show good application effects. Finally, to reflect oil saturation, the ratio of T2 geometric means of NMR T2 spectra under oil-bearing and completely watered conditions was proposed. Then, the quantitative relation between oil saturation and the proposed ratio was established via experimental data from the sealed cores, which established a quantitative prediction on oil saturation of tight conglomerate reservoirs. This showed a good application effect. The average relative error and the root mean square error (RMSE) of the predicted oil saturation and sealed coring measurement were around 10 and 3%, respectively. As the proposed method is only influenced by the wettability of reservoir and viscosity of oil, it is not only appropriate for the studied area, but also for other water-wet reservoirs containing light oil. It is important for identifying oil layers, calculating oil saturation and improving log interpretation accuracy in tight conglomerate reservoirs.


Sign in / Sign up

Export Citation Format

Share Document