Kaiser effect of cracked sandstone under different loading rotating angles

2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Lu Kunpeng ◽  
Zhang Wuzhou ◽  
Xu Xiaotong ◽  
Zhou Yu ◽  
Wu Daoyong ◽  
...  
Keyword(s):  
2011 ◽  
Vol 697-698 ◽  
pp. 93-96 ◽  
Author(s):  
Xiu Jian Tang ◽  
Xin Li Tian ◽  
Jian Quan Wang ◽  
Ya Tao Mao ◽  
F.Q. Li

The developments of edge chipping for engineering ceramics are analyzed. An edge chipping experiment under static load is adopted to study the fracture process of edge chipping. The results show that the fracture processes of edge chipping under different edge distances are similar, which can be divided into four stages based on load-displacement curve. There is obviously Kaiser Effect during the fracture processes of edge chipping. Counts, average frequency, RMS, duration, amplitude and inverse calculation can be used to describe the process of edge chipping for engineering ceramics. Amplitude, duration and average frequency become highly active on the eve of fracture, which can be regard as the omens of edge chipping and used to predict the fracture of edge chipping.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kang Zhao ◽  
Shuijie Gu ◽  
Yajing Yan ◽  
Keping Zhou ◽  
Qiang Li ◽  
...  

Many deep underground excavation practices show that the size and distribution of in situ stress are the main factors resulting in the deformation and instability of the surrounding rock structure. The in situ stress measured by the Kaiser effect of rock is used by engineers because of its economy and convenience. However, due to the lack of quantitative judgment basis in determining the Kaiser point position, there is a large artificial error in the practical application. In response to the problem, this study systematically investigates the characteristics of rock acoustic emission curve on the basis of the fractal theory and establishes an accurate and simple interpretation method for determining the Kaiser point position. The indoor rock acoustic emission test was carried out by drilling a rock sample at a mine site. By using the conventional tangent method, the cumulative ringing count rate-time-stress curve of rock acoustic emission is analyzed to preliminarily determine the time range of Kaiser point appearance. Considering that the fractal dimension of the rock Kaiser point is lower than the adjacent point, the minimum point of the fractal dimension of this time range can be determined from the fractal dimension-time-stress curve. Such determined point is the Kaiser point. The size of the in situ stress is calculated using an analytical method. Based on the value of the in situ stress, the distribution of the in situ stress in the mining area is further analyzed using the geological structure of the mine. The maximum principal stress is 19.38 MPa, with a direction of N (30°-40°) E, and the minimum principal stress is 8.02 MPa with a direction of N (50°-60°) W. The maximum and minimum principal stresses are approximately in the horizontal plane. The intermediate principal stress is 11.73 MPa in vertically downward. These results are basically consistent with the distribution statistical law of the measured in situ stress fields in the world. The results presented in the study could provide a reference for the later mining, stability evaluation, and support of the surrounding rock.


2006 ◽  
pp. 143-150 ◽  
Author(s):  
A Vervoort ◽  
A Govaerts
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document