Robust dynamic output feedback second-order sliding mode controller for uncertain systems

2013 ◽  
Vol 11 (5) ◽  
pp. 878-884 ◽  
Author(s):  
Jeang-Lin Chang
Author(s):  
Mien Van ◽  
Hee-Jun Kang ◽  
Kyoo-Sik Shin

In this paper, a robust output feedback tracking control scheme for uncertain robot manipulators with only position measurements is investigated. First, a quasi-continuous second-order sliding mode (QC2S)-based exact differentiator and super-twisting second-order sliding mode (STW2S) controllers are designed to guarantee finite time convergence. Although the QC2S produces continuous control and less chattering than that of a conventional sliding mode controller and other high-order sliding mode controllers, a large amount of chattering exists when the sliding manifold is defined by the equation [Formula: see text]. To decrease the chattering, an uncertainty observer is used to compensate for the uncertainty effects, and this controller may possess a smaller switching gain. Compared to the QC2S controller, the STW2S has less chattering and tracking error when the system remains on the sliding manifold [Formula: see text]. Therefore, to further eliminate the chattering and obtain a faster transient response and higher tracking precision, we develop a quasi-continuous super-twisting second-order sliding mode controller, which integrates both the merits of QC2S and STW2S controllers. The stability and convergence of the proposed scheme are theoretically demonstrated. Finally, computer simulation results for a PUMA560 robot comparing with conventional QC2S and STW2S controllers are shown to verify the effectiveness of the proposed algorithm.


Author(s):  
Van Mien ◽  
Hee-Jun Kang ◽  
Kyoo-Sik Shin

This article develops a new output feedback tracking control scheme for uncertain robot manipulators with only position measurements. Unlike the conventional sliding mode controller, a quasi-continuous second-order sliding mode controller (QC2C) is first designed. Although the QC2C produces continuous control and less chattering than conventional sliding mode and other high-order sliding mode controllers, chattering exists when the sliding manifold is defined by the equation [Formula: see text]. To alleviate the chattering, an adaptive fuzzy QC2C (FQC2C) is designed, in which the fuzzy system is used to adaptively tune the sliding mode controller gain. Furthermore, in order to eliminate chattering and achieve higher tracking accuracy, quasi-continuous third-order sliding mode controller (QC3C) and fuzzy QC3C (FQC3C) are investigated. These controllers incorporate a super-twisting second-order sliding mode observer for estimating the joint velocities, and a robust exact differentiator to estimate the sliding manifold derivative; therefore, the velocity measurement is not required. Finally, computer simulation results for a PUMA560 industrial robot are also shown to verify the effectiveness of the proposed strategy.


2000 ◽  
Vol 73 (16) ◽  
pp. 1463-1474 ◽  
Author(s):  
Kuo-Kai Shyu ◽  
Yao-Wen Tsai ◽  
Yung Yu ◽  
Kuang-Chiung Chang

Sign in / Sign up

Export Citation Format

Share Document