robot manipulators
Recently Published Documents


TOTAL DOCUMENTS

3322
(FIVE YEARS 385)

H-INDEX

85
(FIVE YEARS 10)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Jun Dai ◽  
Yi Zhang ◽  
Hua Deng

Existing hybrid force/position control algorithms mostly explicitly contain a dynamic model. Moreover, force and position controllers will be switched frequently. To solve the above problems, a novel voltage-based weighted hybrid force/position control algorithm is proposed for redundant robot manipulators. Firstly, mapping between voltage and terminal position and orientation is established so that the designed controller can be simplified by adopting the motor current as the feedback to replace the tedious calculation of the dynamic model. Secondly, a voltage-based weighted hybrid force/position control algorithm is proposed to eliminate the selection matrix. Force and position control laws are summed directly through a weighted way to avoid the problems of space decomposition and switching. Thirdly, the stability is proven using Lyapunov stability theory, then the selection method for weighted coefficient is provided. Fourthly, comparative simulations are performed. Results show that the proposed algorithm is suitable for impedance control and hybrid force/position control and can compensate for their deficiencies. Lastly, the transport experiment in the YZ plane is conducted. Results show that position and force accuracies in the Y- and Z-axis directions are 3.489 × 10−4 and 7.313 × 10−4 m and 1.238 × 10−1 and 1.997 × 10−1 N, respectively. Accordingly, it can effectively improve the operation capability and control accuracy.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 317
Author(s):  
Alexander Zuev ◽  
Alexey N. Zhirabok ◽  
Vladimir Filaretov ◽  
Alexander Protsenko

The problem of fault identification in electric servo actuators of robot manipulators described by nonstationary nonlinear dynamic models under disturbances is considered. To solve the problem, sliding mode observers are used. The suggested approach is based on the reduced order model of the original system having different sensitivity to faults and disturbances. This model is realized in canonical form that enables relaxing the limitation imposed on the original system. Theoretical results are illustrated by practical example.


2022 ◽  
Author(s):  
Marco A. Arteaga ◽  
Alejandro Gutiérrez-Giles ◽  
Javier Pliego-Jiménez

2021 ◽  
Author(s):  
Zengpeng Lu ◽  
Yuanchun Li ◽  
Yan Li

Abstract This paper presents a novel decentralized fixed-time tracking control approach, which realizes the advantages of modular robot manipulators (MRMs) with fixed-time convergence, strong robustness, and high tracking performance. First, to estimate the total uncertainty of MRMs, the fixed-time observer based on the extended state is developed. Then, combined with the disturbance observer, a novel decentralized control method based on a fixed-time control strategy was devised to accomplish global fixed-time convergence of MRMs. And, stability analysis based on Lyapunov is utilized to obtain the fixed-time stability as well as convergence time of MRMs. Finally, numerical analysis and experiment respectively verify the excellent tracking ability of the presented decentralized fixed-time tracking control.


Sign in / Sign up

Export Citation Format

Share Document