scholarly journals Retraction Note: “Nonlinear Backstepping Control Design of LSM Drive System Using Adaptive Modified Recurrent Laguerre Orthogonal Polynomial Neural Network” [IJCAS (2017) 15(2):905–917]

Author(s):  
Chih-Hong Lin
Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1699
Author(s):  
Chih-Hong Lin

As the six-phase squirrel cage copper rotor induction motor has some nonlinear characteristics, such as nonlinear friction, nonsymmetric torque, wind stray torque, external load torque, and time-varying uncertainties, better control performances cannot be achieved by utilizing general linear controllers. The snug backstepping control with sliding switching function for controlling the motion of a six-phase squirrel cage copper rotor induction motor drive system is proposed to reduce nonlinear uncertainty effects. However, the previously proposed control results in high chattering on nonlinear system effects and overtorque on matched uncertainties. So as to reduce the immense chattering situation, we then put forward the rectified reiterative sieved-Pollaczek polynomials neural network backstepping control with an improved fish school search method to estimate the external bundled torque uncertainties and to recoup the smallest reorganized error of the evaluated rule. In the light of Lyapunov stability, the online parametric training method of the rectified reiterative sieved-Pollaczek polynomials neural network can be derived by utilizing an adaptive rule. Moreover, to improve convergence and obtain beneficial learning manifestation, the improved fish school search algorithm is made use of to readjust two fickle learning rates of the weights in the rectified reiterative sieved-Pollaczek polynomials neural network. Lastly, the effectuality of the proposed control system is validated by examination results.


2019 ◽  
Vol 41 (14) ◽  
pp. 4114-4128 ◽  
Author(s):  
Chih-Hong Lin

A switched reluctance motor (SRM) drive system has highly nonlinear uncertainties owing to a convex construction. It is hard for the linear control methods to achieve good performance for the SRM drive system. An adaptive nonlinear backstepping control system using the mended recurrent Romanovski polynomials neural network and mended PSO with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SRM drive system. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the mended recurrent Romanovski polynomials neural network and the error estimated law are established. Furthermore, to help improve convergence and to obtain better learning performance, the mended particle swarm optimization (PSO) algorithm is utilized for adjusting the two varied learning rates of the two parameters in the mended recurrent Romanovski polynomials neural network. Finally, some experimental results and a comparative analysis are verified that the proposed control scheme has better control performances for controlling the SRM drive system.


Sign in / Sign up

Export Citation Format

Share Document