Late Quaternary Glacier Fluctuations in the NW Himalaya: Evolving Perspectives

2021 ◽  
Vol 97 (5) ◽  
pp. 447-450
Author(s):  
Shubhra Sharma
2016 ◽  
Vol 132 ◽  
pp. 40-56 ◽  
Author(s):  
Shaun R. Eaves ◽  
Andrew N. Mackintosh ◽  
Gisela Winckler ◽  
Joerg M. Schaefer ◽  
Brent V. Alloway ◽  
...  

2008 ◽  
Vol 31 (-1) ◽  
pp. 45-52 ◽  
Author(s):  
Manoj Jaiswal ◽  
Pradeep Srivastava ◽  
Jayant Tripathi ◽  
Rafique Islam

Feasibility of the Sar Technique on Quartz Sand of Terraces of NW Himalaya: A Case Study from DevprayagOptically Stimulated Luminescence (OSL) dating technique based on the Single Aliquot Regenerative dose (SAR) protocol is being used increasingly as a means of establishing sediment burial age in the late Quaternary studies. Thermal transfer, low and changing luminescence sensitivity of quartz grains of young sedimentary belts of the New Zealand Alps and the north-east Himalaya poses problems in using SAR protocol. Records of active tectonics and signatures of palaeo-climate are preserved in the Quaternary - Holocene terrace sediments. Therefore, to unfold the history of successive tectonic and palaeo-climate events, robust chronological technique is needed. Palaeoflood deposits in NW Lesser Himalayan region receive quartz from the weathering of various rock types such as quartzite and phyllite in the Alaknanda Basin. A series of tests e.g. dose recovery, preheat plateau, thermal recuperation and change in sensitivity, were performed to check the suitability of quartz grains collected from the terrace sediment of Devprayag of the NW Himalaya, for OSL studies. Inferences were drawn regarding the source of the quartz grains on the basis of the geochemistry and luminescence intensity of the terrace sediment. The study shows that though quartz from the North West Himalaya are low in luminescence intensity but the reproducibility of De value makes the quartz sand suitable for SAR dating technique. Relation between luminescence intensity with CIA values help to predict the provenance of quartz sand. Tests show that the quartz from NW Himalaya is suitable for SAR protocol in OSL.


2020 ◽  
Author(s):  
Elizabeth N. Orr
Keyword(s):  

Sample details of local and regional chronological datasets


2018 ◽  
Vol 127 (1) ◽  
Author(s):  
Shubhra Sharma ◽  
Aadil Hussain ◽  
Amit K Mishra ◽  
Aasif Lone ◽  
Tarun Solanki ◽  
...  
Keyword(s):  

2015 ◽  
Vol 371 ◽  
pp. 76-86 ◽  
Author(s):  
Praveen K. Mishra ◽  
A. Anoop ◽  
G. Schettler ◽  
Sushma Prasad ◽  
A. Jehangir ◽  
...  

2021 ◽  
Author(s):  
◽  
Shaun Eaves

<p>Understanding the drivers and mechanisms of past, natural changes in Earth’s climate is a fundamental goal of palaeoclimate science. Recent advances in cosmogenic surface exposure dating and numerical glacier modelling have greatly improved the utility of geological glacial records for palaeoclimatic reconstruction. Here, I apply these techniques to investigate the timing and magnitude of late Quaternary mountain glacier fluctuations on Tongariro massif and Mt. Ruapehu volcanoes in central North Island, New Zealand (39°S).  First, I constrain the local cosmogenic ³He production rate, in order to compare my subsequent ³He moraine chronologies with other well-dated palaeoclimate records. I present a new radiocarbon age for a large debris avalanche event on the northwest slopes of Mt. Ruapehu that occurred at 10.4-10.6 cal. ka BP. Cosmogenic ³He concentrations in surficial boulders deposited during this event are consistent with that predicted by a global compilation of similar production rate calibrations. Thus, I conclude that this globally compiled production rate is suitable for cosmogenic ³He exposure age calculations in New Zealand.  Exposure ages from moraine boulders on both volcanoes constrain the timing of two periods of glaciation during the last glacial cycle, when the termini of valley glaciers reached c. 1200 m asl. The most recent of these events occurred between c. 31-17 ka, which corresponds with the global Last Glacial Maximum. During this period, the local equilibrium line altitude was depressed by c. 800-1100 m. Numerical model simulations of the glaciers, using a coupled energy balance/ice flow model, suggest that local atmospheric temperature was 4-7 °C colder than present. This palaeotemperature estimate is not greatly impacted by post-glacial topographic change on these active volcanoes. Surface exposure ages from a degraded lateral moraine on Tongariro massif indicate that an earlier period of glaciation, of similar extent to that at the LGM, culminated during Marine Isotope Stage 4.  During the last glacial-interglacial transition (c. 18-11 ka), glacial retreat on Mt. Ruapehu was interrupted by a re-advance during the late-glacial (c. 15-11 ka). Exposure ages for this event exhibit some scatter, likely due to surface processes. Accounting for these processes with a topographic diffusion model yields a best-estimate age of 14-13 ka, corresponding to the Lateglacial reversal in New Zealand. Glacier model experiments indicate this re-advance resulted from a temperature lowering of 2.5-3.4 °C relative to present. Comparison with other proxy records suggests that this cooling was most pronounced during summer. Due to its lower elevation, it is unlikely that glaciers were present on Tongariro massif at this time.  The results of this research provide the first direct age constraint and quantitative palaeoclimate reconstructions for late Quaternary glacier fluctuations in central North Island, New Zealand. The timing and magnitude of these changes are in good agreement with glacial records from the Southern Alps and South America. This suggests that glaciers in the southern mid-latitudes were responding to common climatic forcings at orbital- and millennial-timescales, during the last glacial cycle.</p>


2014 ◽  
Vol 81 (3) ◽  
pp. 464-475 ◽  
Author(s):  
XianJiao Ou ◽  
ZhongPing Lai ◽  
ShangZhe Zhou ◽  
LanHua Zeng

AbstractIt is highly debated whether glacial advances on the Qinghai–Tibetan Plateau (QTP) occurred as a response to temperature cooling, or whether they were forced by an increase in moisture brought by the intensive Indian summer monsoon. We here report a case study investigating this issue. Multiple moraine series in the Yingpu Valley, Queer Shan ranges of the Hengduan Mountains, and eastern QTP, provide an excellent archive for examining the timing and trigger mechanism of glacier fluctuations. Twenty-seven optically stimulated luminescence (OSL) samples of glacial sediments were collected from this valley. The quartz OSL ages show that the moraine series of Y-1, I, M and O were formed during the Late Holocene, Late Glacial, the global Last Glacial Maximum (LGM) and Marine Oxygen Isotope Stage (MIS) 3 (likely mid-MIS-3). The youngest Y-2 moraines probably formed during the Little Ice Age (LIA). The oldest H moraines formed before MIS-3. We found that glacial advances during the late Quaternary at the Yingpu Valley responded to cold stages or cold events rather than episodes of enhanced summer monsoon and moisture. As a result, glaciers in the monsoonal Hengduan Mountains were mainly triggered by changes in temperature. Millennial time scale temperature oscillations might have caused the multiple glacial advances.


Sign in / Sign up

Export Citation Format

Share Document