oxygen isotope stage
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 22)

H-INDEX

40
(FIVE YEARS 3)

Quaternary ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Kathryn E. Fitzsimmons ◽  
Zoran Perić ◽  
Maike Nowatzki ◽  
Susanne Lindauer ◽  
Mathias Vinnepand ◽  
...  

Loess provides a valuable terrestrial record of past environmental conditions, including the dynamics and trajectories of air mass circulation responsible for dust transport. Here we explore variations in the luminescence sensitivity characteristics of sedimentary quartz and feldspar as possible tools for identifying changes in source down a loess-palaeosol sequence (LPS). Luminescence sensitivity is a rapidly measurable index which is the product of interplay between source lithology and the history of the quartz or feldspar clasts. Variations in sensitivity of down profile may therefore reflect changes in sediment provenance as well as other factors such as weathering through pedogenesis. We undertake an empirical investigation of the luminescence sensitivity of quartz and feldspar from different grain-size fractions from the Schwalbenberg LPS in the German Rhine valley. We compare samples from a 30 m core spanning the last full glacial cycle with samples of oxygen isotope stage (OIS) 3–2 age exposed within nearby profile. We find an overall inverse relationship between quartz and feldspar sensitivity, as well as variability in sensitivity between different quartz grain sizes. Statistical analyses yield a significant correlation between IR50 sensitivity from unprocessed sediments and clay content, and feldspar sensitivity and Si/Al ratios down the core. Since Si/Al ratios may indicate changes in provenance, the latter correlation suggests that IR50 measurements on unprocessed samples may be used to provide a reliable, rapid scan of source variability over millennial timescales.


2021 ◽  
Vol 13 (12) ◽  
Author(s):  
Sara E. Rhodes ◽  
Nicholas J. Conard

AbstractEnsuring comparability between results is a key goal of all paleoecological reconstructions. Quantitative estimates of meteorological variables, as opposed to relative qualitative descriptions, provide the opportunity to compare local paleoenvironmental records against global estimates and incrementally build regional paleoclimatic records. The Bioclimatic Method provides quantitative and qualitative estimates of past landscape composition and climate along with measures of statistical accuracy by applying linear discriminant functions analysis and transfer functions to faunal taxonomic abundance data. By applying this method to the rodent data from Geißenklösterle and Hohle Fels, two Paleolithic cave sites located in the Ach Valley of southwestern Germany, we classify the regional vegetation according to Walters’ zonobiome model. We also present new estimates of meteorological variables including mean annual temperature, mean annual precipitation, and vegetative activity period of the Ach Valley for the period spanning ~ 60,000 to 35,000 cal BP. The results suggest the Ach Valley contained a non-analogous landscape of arctic tundra and temperate deciduous woodland with occasional arid steppe expansion. Meteorological estimates suggest the climate was significantly colder during the Middle and Upper Paleolithic than today, with higher annual precipitation and dramatic temperature shifts between seasons. These results fit well with climatic reconstructions from Switzerland and the Netherlands based on a variety of proxies. They also provide further evidence of a localized climatic response within southwestern Germany to the stadial-interstadial shifts preceding the Heinrich 4 event. Finally, these results reinforce our previous claims that climatic volatility was not a driving force in the loss of Neanderthal groups throughout the Swabian Jura during OIS 3.


Geology ◽  
2021 ◽  
Author(s):  
Rachel N. Sortor ◽  
Brent M. Goehring ◽  
Sean P. Bemis ◽  
Chester A. Ruleman ◽  
Marc W. Caffee ◽  
...  

The Pliocene-Pleistocene transition resulted in extensive global cooling and glaciation, but isolating this climate signal within erosion and exhumation responses in tectonically active regimes can be difficult. The Nenana Gravel is a foreland basin deposit in the northern foothills of the Alaska Range (USA) that has long been linked to unroofing of the Alaska Range starting ca. 6 Ma. Using 26Al/10Be cosmogenic nuclide burial dating, we determined the timing of deposition of the Nenana Gravel and an overlying remnant of the first glacial advance into the northern foothills. Our results indicate that initial deposition of the Nenana Gravel occurred at the onset of the Pleistocene ca. 2.34 Ma and continued until at least ca. 1.7 Ma. The timing of initial deposition is correlative with expansion of the Cordilleran ice sheet, suggesting that the deposit formed due to increased glacial erosion in the Alaska Range. Abandonment of Nenana Gravel deposition occurred prior to the first glaciation extending into the northern foothills. This glaciation was hypothesized to have occurred ca. 1.5 Ma, but we found that it occurred ca. 0.39 Ma. A Pleistocene age for the Nenana Gravel and marine oxygen isotope stage 10 age for the oldest glaciation of the foothills necessitate reanalysis of incision and tectonic rates in the northern foothills of the Alaska Range, in addition to a shift in perspective on how these deposits fit into the climatic and tectonic history of the region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Christian Laag ◽  
Ulrich Hambach ◽  
Christian Zeeden ◽  
France Lagroix ◽  
Yohan Guyodo ◽  
...  

In mid-latitude Eurasia, loess-paleosol sequences (LPS) provide the most widespread sedimentary records of Quaternary paleoenvironmental evolution. In the Middle Danube Basin (MDB), these archives cover at least the last million years of climate history, and occasionally contain archeological findings. The studied Zemun LPS is located on the right bank of the Danube in Northern Serbia. The site was declared as a protected site, based on Paleolithic artifacts found on the riverbank and stemming from unknown stratigraphic levels of the loess cliffs exposed along the Danube. The present study aims to provide a stratigraphic, paleoenvironmental, and temporal context for the Zemun LPS by means of environmental magnetic and colorimetric methods. Our investigations result in a chronostratigraphic scheme allowing direct comparison with other well-established reference records in the MDB and elsewhere. Two potential tephra layers tentatively assigned to the so-called L2 and Bag tephras, which are both widespread in the MDB and beyond were investigated for their bulk magnetic properties. The resulting integrated age model suggests that the Zemun LPS records a detailed history of a quasi-continuous accumulation of mineral dust from Marine Oxygen Isotope Stage (MIS) 11–5a (c. 430–60 ka). The outcome of our integrative approach indicates a continuous aridification over the last four interglacial/glacial cycles and we discuss potential changes in seasonality over time.


Author(s):  
Robert C. Speed ◽  
Hai Cheng

ABSTRACT The geomorphic evolution of southeastern windward Barbados is embodied in the development of a terraced seaward island slope on a tectonically rising scarp. The island slope is wholly erosional and a product of marine and subaerial processes. Modulation of the slope by terraces has occurred fundamentally by marine erosion at eustatic stillstands but includes morphologic additions by limestone deposition. The ongoing phase of morphologic development and island emergence began at or before ca. 700 ka. Emergence has proceeded at an increasing rate northwestward along the island’s southeastern coastline. The terraced island slope is markedly affected by post-terrace denudation. As many as eight marine terraces are preserved on the windward island slope below the planed surface of the Central Highlands, which is counted as terrace 1. Relics of an upper set of terraces are perched on the face of Second High Cliff, the ancient erosional margin of the oldest limestone capping Barbados. Second High Cliff developed by successive marine incisions over a probably long duration preceding oxygen isotope stage 9. A lower terrace set was excised in stages 9 through 5a in the siliciclastic island foundation or (and) in limestone cover of preceding terraces. Marine terrace floors extend seaward from an erosional backcliff and shoreline angle to a younger erosional cutoff. The most broadly preserved terrace floors indicate the following systematic succession of seaward profile elements: narrow upper ramp; broad upper flat; lower ramp; and on one, a lower flat. Carbonate cover is chiefly clastic on the upper ramp and flat, and chiefly reefal on the lower ramp. Most shoal-water reefal facies appear to be in fringe reef blankets. Terrace profile geometries are explained by a simple theory of wave abrasion in proportion to duration of sea level at a shoreline. At stillstands, the wave impact caused large shoreline recession and development of flats, whereas in transgression and regression, rapid sea-level change permitted only minor recession. Corresponding differences in cover facies are explained as functions of duration of breaking waves and seabed stability. Widespread post-terrace denudation is attributed to floods of upland provenance, local overland flow, and marine flooding. Riverine processes have produced channelization and a high degree of terrace preservation on the interfluves in the steeper, foundation-based northern windward region. This differs markedly from the more diffuse, shallow gullying and stripping of the limestone-covered shallow slopes of the southern region. An intensely stormy spell is suggested between stages 5e and 5c.


2021 ◽  
Author(s):  
Kathryn Fitzsimmons ◽  
Peter Fischer ◽  
Zoran Peric ◽  
Maike Nowatzki ◽  
Susanne Lindauer ◽  
...  

<p>Loess – a homogeneous, predominantly silt-sized aeolian sediment – has long been recognised as a valuable terrestrial record of past environmental conditions. Loess deposits drape some 10% of the Earth’s land surface, accumulating almost continuously in some regions. Most aeolian dust is thought not to travel far, often deriving from fine-grained material transported by rivers from glaciated regions. The provenance of loess sediment is inferred from the trajectories of atmospheric circulation systems and how these may have changed in intensity and influence over a region through time. The most frequently used techniques for correlating aeolian dust deposits with likely source areas, including bulk geochemistry, age distributions of detrital zircons, and Sr-Nd isotope ratios in clays, remain limited in the information they may provide about loess provenance. Since loess is dominated by silicate minerals – namely, quartz and feldspars – it is advantageous to explore their potential as indicators of source changes within loess-paleosol sequences (LPS). Increasingly, researchers have been exploring variations in the luminescence characteristics of sedimentary quartz and feldspar as possible provenance tools. Of a range of approaches so far applied, luminescence sensitivity is the quickest to measure and provides a means to rapidly assess potential changes in sediment source down LPS.</p><p>Luminescence sensitivity – the signal intensity per absorbed radiation dose – arises from the efficiency of charge traffic between traps and luminescence centres within a crystalline framework. In a sedimentary context, sensitivity is the product of interplay between source lithology and the history of the mineral in question. Consequently, shifts in sediment provenance may be observed through variations in luminescence sensitivity down LPS. Despite the presence of thick loess deposits across Europe, however, this approach has yet to be tested on this continent.</p><p>Here we undertake an empirical investigation of the luminescence sensitivity characteristics of quartz and feldspar from different grain-size fractions at the Schwalbenberg LPS in the German Rhine valley. The Schwalbenberg LPS has recently been shown to respond to variability in Atlantic-driven climate oscillations in fine detail; it follows, therefore, that changes in source will likely be recorded in its sediments. We test the potential of luminescence sensitivity as an indicator of changes in sediment source through time, comparing samples from a 30 m core (REM3) spanning the last full glacial cycle, with samples of oxygen isotope stage (OIS) 3-2 age exposed within a c. 6 m profile on the southern margins of the deposit. The temporal overlap of the two localities during OIS3 enables comparison of luminescence characteristics with respect to possible provenance during that timeframe; we find an inverse relationship between quartz and feldspar sensitivity, as well as variability in sensitivity between different quartz grain sizes. There is some indication that feldspar sensitivity increases during periods of soil formation down the core. These observations may suggest source variability over millennial timescales.</p>


2021 ◽  
pp. 1-11
Author(s):  
Rhiannon E. Stevens ◽  
Hazel Reade

Abstract The position of the Banwell Bone Cave mammal assemblage zone (MAZ) in the mammalian biostratigraphy of the British Isles has been the focus of debate for decades. Dominated by fauna typical of cold environments it was originally linked to the marine oxygen isotope stage (MIS) 4 stadial (ca. 72–59 ka). Subsequently it was argued that the Banwell Bone Cave MAZ more likely relates to the temperate interstadial of MIS 5a (ca. 86–72 ka). It is envisioned that “cold fauna” such as bison and reindeer moved into Britain during stadial MIS 5b (ca. 90 ka) and were subsequently isolated by the rising sea level during MIS 5a. Here we investigate environmental conditions during the Banwell Bone Cave MAZ using bone collagen δ13C and δ15N and tooth enamel δ18O and δ13C isotope analysis. We analyse bison and reindeer from the MAZ type-site, Banwell Bone Cave. Our results show unusually high δ15N values, which we ascribe to arid conditions within a temperate environment. Palaeotemperature estimates derived from enamel δ18O indicate warm temperatures, similar to present day. These results confirm that the Banwell Bone Cave MAZ relates to a temperate interstadial and supports its correlation to MIS 5a rather than MIS 4.


Sign in / Sign up

Export Citation Format

Share Document