A fast and reliable perturb and observe maximum power point tracker for solar PV system

Author(s):  
Ahteshamul Haque ◽  
Zaheeruddin
Author(s):  
C. Pavithra ◽  
Pooja Singh ◽  
Venkatesa Prabhu Sundramurthy ◽  
T.S. Karthik ◽  
P.R. Karthikeyan ◽  
...  

Author(s):  
Mostafizur Rahman ◽  
Md. Mahmudur Rahman

This paper presents a detailed theoretical study of photovoltaic (PV) systems and their operation using the MPPT (Maximum Power Point Tracking) method and presents the simulation of photovoltaic modules validated by computer software simulation followed by an experimental setup of MATLAB R2017a. The first approach to build the performance of a photovoltaic solar panel is to use a maximum power point tracker in rapidly changing climatic conditions and use a DC-DC converter to maximize the output power. This framework can operate at the maximum power point MPP and produces its highest power in different irradiance conditions when the solar panels are partially shaded. The main perspectivesis design and simulation of a simple but efficient charge controller by utilizing maximum power point tracker for photovoltaic system and analysis results show that this MPPT system with perturb & observe (P&O) method and the DCDC Boost converter can significantly increase the efficiency and the performance of PV.


2017 ◽  
Vol 26 (2) ◽  
pp. 103
Author(s):  
Dinesh K. Sharma ◽  
Ghanshyam Purohit Purohit

We report on an improved maximum power point tracking (MPPT) system based on a differential power algorithm. In the proposed algorithm, which is a modified form of a perturb and observe (P&O) algorithm, differential powers, as well as voltages at different time, are compared. The proposed algorithm has been implemented with a highly efficient boost converter, in which duty cycle of a switch is varied in such a way, that the power reaches a maximum at any instant of the day, irrespective of the environmental conditions. The improved MPPT is able to reduce the number of oscillations and tracking time significantly before reaching the maximum power point (MPP). The simulated I-V and P-V characteristic curves (individual and combined) of a solar PV module were generated in MATLAB.


Sign in / Sign up

Export Citation Format

Share Document