Advanced power optimization of worm gear drive with profile shift using nature inspired algorithms

Author(s):  
N. Godwin Raja Ebenezer ◽  
S. Ramabalan ◽  
S. Navaneethasanthakumar
Author(s):  
I. H. Seol ◽  
Faydor L. Litvin

Abstract The worm and worm-gear tooth surfaces of existing design of Flender gear drive are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause the shift of the bearing contact and transmission errors. The authors propose : (1) Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design (2) Methods of modification of geometry of worm-gear drives that enable to localize and stabilize the bearing contact and reduce the sensitivity of drives to misalignment (3) Methods for computerized simulation of meshing and contact of worm-gear drives with modified geometry The proposed approach was applied as well for the involute (David Brown) and Klingelnberg type of worm-gear drives. Numerical examples that illustrate the developed theory are provided.


Author(s):  
F. L. Litvin ◽  
D. J. Kin ◽  
Y. Zhang

Abstract Gear tooth surfaces being in line contact at every instant are considered. The dimensions of the contacting surfaces must be limited in order to avoid: (i) the appearance of the envelope of lines of contact on the generating surface Σ1 and (ii) the appearance of singular points on the generated surface Σ2. The relations between the developed concepts and the Wildhaber’s concept of the limiting pressure angle are investigated. Applications to the worm-gear drive and the generation of a pinion of a formate gear drive are considered. Computer graphics have been used to illustrate the results of computation.


Author(s):  
S Totolici ◽  
V G Teodor ◽  
N Baroiu ◽  
N Oancea
Keyword(s):  

2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Wei-Liang Chen ◽  
Chung-Biau Tsay

Based on the previously developed mathematical model of a series of recess action (RA) worm gear drive (i.e., semi RA, full RA, and standard proportional tooth types) with double-depth teeth, the tooth contact analysis (TCA) technique is utilized to investigate the kinematic error (KE), contact ratio (CR), average contact ratio (ACR), instantaneous contact teeth (ICT) under different assembly conditions. Besides, the bearing contact and contact ellipse are studied by applying the surface topology method. Three numerical examples are presented to demonstrate the influence of the assembly errors and design parameters of the RA worm gear drive on the KE, CR, ACR, ICT, and contact patterns.


2000 ◽  
Vol 122 (2) ◽  
pp. 201-206 ◽  
Author(s):  
I. H. Seol

The design and simulation of meshing of a single enveloping worm-gear drive with a localized bearing contact is considered. The bearing contact has a longitudinal direction and two branches of contact path. The purpose of localization is to reduce the sensitivity of the worm-gear drive to misalignment. The author’s approach for localization of bearing contact is based on the proper mismatch of the surfaces of the hob and drive worm. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and the determination of the transmission errors and the contact ratio. The developed approach has been applied for K type of single-enveloping worm-gear drives and the developed theory is illustrated with a numerical example. [S1050-0472(00)00502-X]


The accurate design of spur gear drive has a tremendous impact on size, weight, transmission and machine performance. Also, the demand for lighter gears is high in power transmission systems, as they save material and energy. Hence this paper presents an enhanced method to solve a two stage spur gear optimization problem. It consists of a mathematical model with a nonlinear objective function and 11 constraints. A two stage spur gear is considered. To obtain minimum volume of spur gear drive is objective of the problem. The considered design variables are: Module, number of teeth, base width of the gears and, shaft diameter and power. Besides considering regular mechanical constraints based on American Gear Manufacturers Association (AGMA) requisites, six more additional critical constraints on contact ratio, load carrying capacity, power loss, root not cut, no involute interference and line of action are imposed on the drive. Nature inspired optimization algorithms, namely, Simulated Annealing (SA), Firefly (FA) and MATLAB solver fmincon are used to find solution in MATLAB environment. Simulation results are analyzed, compared with literature and validated


Sign in / Sign up

Export Citation Format

Share Document