Thermo-Mechanical Nonlinear Bending Analysis of Functionally Graded Thick Circular Plates Resting on Winkler Foundation Based on Sinusoidal Shear Deformation Theory

2017 ◽  
Vol 43 (3) ◽  
pp. 1137-1151 ◽  
Author(s):  
Fatemeh Farhatnia ◽  
Jafar Babaei ◽  
Raana Foroudastan
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Pham Minh Phuc ◽  
Vu Nguyen Thanh

In this article, a new sinusoidal shear deformation theory was developed for static bending analysis of functionally graded plates resting on elastic foundations. The proposed theory used an undefined integral term to reduce the number of the unknown to four without any shear correction factors. The high accuracy and efficiency of the proposed theory were proved thanks to the comparisons of the present results with other available solutions. And then, the proposed theory was successfully applied to investigate the bending behavior of the functionally graded plates resting on Winkler–Pasternak foundations. The governing equations of motion were established by using Hamilton’s principle, and the Navier’s solution technique was employed to solve these equations. The effects of some factors of the geometrics, the materials properties, and the elastic foundation parameters on the bending behaviors of the FGM plates were investigated intensely. Also, some novel results and special phenomenon were carried out.


Sign in / Sign up

Export Citation Format

Share Document